
Guaranteeing Deadlines for Inter-Datacenter Transfers

Hong Zhang1, Kai Chen1, Wei Bai1, Dongsu Han2, Chen Tian3

Hao Wang1, Haibing Guan4, Ming Zhang5

1SING Group@HKUST 2KAIST 3NJU 4SJTU 5Microsoft Research

Abstract
Inter-datacenter wide area networks (inter-DC WAN) carry
a significant amount of data transfers that require to be
completed within certain time periods, or deadlines. However,
very little work has been done to guarantee such deadlines.
The crux is that the current inter-DC WAN lacks an interface
for users to specify their transfer deadlines and a mechanism
for provider to ensure the completion while maintaining high
WAN utilization.

This paper addresses the problem by introducing a
Deadline-based Network Abstraction (DNA) for inter-DC
WANs. DNA allows users to explicitly specify the amount
of data to be delivered and the deadline by which it has to
be completed. The malleability of DNA provides flexibility
in resource allocation. Based on this, we develop a system
called Amoeba that implements DNA. Our simulations
and testbed experiments show that Amoeba, by harnessing
DNA’s malleability, accommodates 15% more user requests
with deadlines, while achieving 60% higher WAN utilization
than prior solutions.

1. Introduction
Global online services and cloud platform providers, such as
Google, Microsoft, and Amazon, construct multiple datacen-
ters (DCs) across the world to deliver their services [8, 9].
The wide area network (WAN) that connects these geographi-
cally distributed DCs is one of the most critical and expensive
infrastructures that costs hundreds of millions of dollars annu-
ally [8]. The shared infrastructure provides transit services for
tenants. In public clouds (e.g., Amazon AWS), a tenant could
be a customer that launches multiple virtual private clouds
(VPC) in multiple DCs. In private clouds (e.g., Google and
Microsoft’s internal DCs), a tenant could be a service team
that launches multiple VMs globally.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroSys’15, April 21–24, 2015, Bordeaux, France.
Copyright © 2015 ACM 978-1-4503-3238-5/15/04. . . $15.00.
http://dx.doi.org/10.1145/2741948.2741957

The inter-DC traffic can be broadly classified into three
categories based on time-sensitivity: interactive traffic that is
most sensitive to delay; larger transfers which require deliv-
ery within certain time periods (e.g., hours); and background
traffic without strict time requirements [4, 8]. One key char-
acteristics of inter-DC traffic is that a significant amount of
transfers have deadlines, either hard or soft. Hard deadline
means a transfer is useless to applications once late, whereas
soft deadline means the value of a transfer degrades after the
deadline, affecting application performance (§3).

Thus, providing deadline guarantees for inter-DC trans-
fers is essential for many applications. To the best of our
knowledge, however, no existing mechanism is in place to
guarantee the deadlines:

• In private clouds, state-of-the-art inter-DC traffic engi-
neering (TE) techniques do not guarantee deadlines. For
example, SWAN [8] and B4 [9] enforce a strict priority
among traffic categories, but do not explicitly account
for deadlines and thus can cause many transfers to miss
their deadlines (§8). Tempus [13] maximizes the minimal
fraction of delivery of all transfers until deadlines, but
does not guarantee the completion of any of them before
deadlines (§3).

• In public clouds, the current practice does not even differ-
entiate among different traffic categories. Our measure-
ments of a real inter-DC WAN show that only rate limiting
is applied to provide isolation across tenants. In addition,
even with the rate limiting, bandwidth varies dramatically
across time and DC sites (§2).

This makes it difficult for critical business applications
to run on top of the infrastructure. As a result, the inter-DC
WAN is under increased pressure to provide service level
agreements (SLAs) [1]. The crux is that the current inter-
DC WAN lacks both an interface for tenants to specify their
transfer deadlines and a mechanism for provider to meet the
deadlines. We seek such an interface and a mechanism in this
paper. We aim to fully utilize the scarce WAN bandwidth
resource to guarantee deadlines for as many transfers as
possible.

Existing solutions of intra-DC bandwidth guarantees [2,
6, 23] cannot be adopted to solve our problem. The reason
is that although these pre-determined bandwidth reservation
models (either flat [2, 6] or time-varying [23]) can guarantee

deadlines by providing minimum bandwidth guarantees,
they cannot fully utilize the WAN bandwidth due to their
inflexibility (§3).

In this paper, we introduce DNA, a Deadline-based Net-
work Abstraction, tailored for inter-DC WANs. DNA allows
tenants to explicitly express what they want from the network
in terms of the data volume and the deadline by which it
must be delivered. Note that DNA allows bandwidth allo-
cation for a single request to change over time as long as
the total transfer volume is kept. Such intrinsic malleability
enables providers to schedule the scarce WAN bandwidth in
a more flexible and efficient way based on network condi-
tions. Providers can now arrange when and how much data to
transfer to achieve better multiplexing and to ensure higher
network utilization.

We develop a system, Amoeba, that implements DNA
in a scalable manner. Amoeba employs a temporal-spatial
allocation algorithm for on-line admission control, and our
algorithm strikes a good balance between scalability and op-
timality: it achieves 30× speedup in terms of allocation time
at the expense of sacrificing 3% in performance compared to
a global optimal strategy. Amoeba further considers a series
of practical design and implementation issues, e.g., how to
handle network dynamics and be robust to failures and traffic
mispredictions. Finally, we discuss a simple pricing model
to encourage tenants to reveal their authentic requirements
under Amoeba.

In short, this work makes the following contributions:
• Using measurements of a production Inter-DC WAN and

simulations, we reveal that the current Inter-DC WAN
is insufficient to guarantee deadline-sensitive Inter-DC
transfers.
• We introduce DNA, a deadline-based network abstraction

tailored for inter-DC WANs, and develop Amoeba, a
system that implements DNA. We deploy Amoeba on
a small testbed emulating a 6-site inter-DC WAN, and
evaluate our design using testbed experiments as well
as large-scale simulations with realistic inter-DC WAN
topologies.
• Our evaluation shows that Amoeba accommodates 15%

more transfer requests with deadlines guaranteed than
state-of-the-art solutions, while achieving 60% higher
network utilization. Using a simple pricing model, this
directly translates to 40% more revenue for the provider.

2. Measuring an inter-DC WAN
While prior work [8, 9, 15] describes how TE is done
in private clouds, very little is known about how public
clouds perform. To get a sense of the quality of service
of public clouds, we perform measurements on Amazon
AWS intra- and inter-DC networks. We choose 6 DCs to
measure: Virginia (US east), Oregon (US west), Ireland
(Europe), S.Paulo (South America), Tokyo (Asia) and Sydney
(Oceania). In each DC, we choose 3 machine types whose

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

200

400

600

800

1000

Number of flows (Inter−DC)

A
gg

re
ga

te
d

T
hr

ou
gh

pu
t (

M
bp

s)

1 2 3 4
0

200

400

600

800

1000

Number of flows (Intra−DC)

A
gg

re
ga

te
d

T
hr

ou
gh

pu
t (

M
bp

s)

Figure 1. Aggregate throughput between VMs of high net-
work performance type

XXXXXXXXType
Region

Oregon Ireland S.Paulo Tokyo Sydney

Low 61 58 47 27 29
Moderate 180 150 106 82 69

High 296 223 182 126 107

Table 1. The throughput of inter-DC flows measured from
Virginia (Mbps).

XXXXXXXXVariate
Region

Oregon Ireland S.Paulo Tokyo Sydney

Bandwidth ratio 5.05 2.59 2.13 4.01 4.12
Transfer time ratio 2.67 1.43 1.39 1.97 2.41

Table 2. The Inter-DC WAN performance variability on
bandwidth and time (95th percentile vs 5th percentile ratio).

network performance metrics are labeled low, moderate, and
high.

Our measurement results show the performance heavily
depends on rate limiting, and varies significantly over time
and across DCs.

Rate limiting: We measure the total TCP throughput when
increasing the number of TCP flows between each pair of
VMs from 1 to 15. To observe the difference between intra-
and inter-DC traffic, we vary the VM locations. We first
place all VMs in the same DC (Virgina). Then, one VM in
each pair is moved to Ireland. Figure 1 shows the aggregate
throughput between VMs of the high network performance
type. Similar patterns are observed in other types. We make
two observations (which have been confirmed with Amazon
engineers):

• Per-VM rate limiting: The bandwidth is capped at the
same limit for both Intra-DC and Inter-DC (while different
VM types have different rate limits). As shown in the
figure, the cap for high performance VM type is around
1000Mbps.

• Additional per-flow rate limiting for Inter-DC transfers:
The results in Figure 1 suggest that inter-DC traffic is rate-
limited on a per-flow basis. At the beginning, the total
throughput increases almost linearly to the number of
flows, but eventually reaches the per-VM rate limit. This

is not a consequence of TCP’s per-flow fairness because
the total throughput stabilizes only after a specific number
of TCP flows. We have also verified that the observed
per-flow rate limiting is not due to a small receive window.
For example, the throughput remains the same when we
double the TCP receive buffer.

WAN performance variability: Even though strict rate lim-
iting is in place, inter-DC WAN performance significantly
varies across DCs and over time. We measure the throughput
from VMs in Virginia to VMs in the other five DCs respec-
tively every 5 minutes over a total period of 35 hours. For
each pair of VMs, we have 420 measurement points.

Table 1 shows the maximum throughput of all samples for
each VM pair. We find that the throughput varies between
different DCs by a factor of up to 2.8. Table 2 shows the
ratio between the 95th percentile value over 5th percentile
value over the 35 hours, which varies from 2 to 5. The largest
variability occurs between Virginia and Oregon. One possible
cause of such variability is congestion in inter-DC WAN.
However, we do not observe such high variability for intra-
DC VM pairs. To further quantify the consequence of inter-
DC WAN bandwidth variability, we simply transfer 1GB
data between each VM pair at different time and measure the
variations in completion time. The measurement in Table 2
shows that the variation can be as large as 2.67×. This
suggests that it is difficult to ensure timely data delivery
for traffic with deadline.

3. Background and Motivation

Deadlines: The nature of many DC applications has imposed
hard or soft deadlines to a large amount of inter-DC WAN
traffic [4, 8, 9]. Deadline is important for inter-DC transfers.
The main reason is that the total demand for inter-DC trans-
fers typically far exceeds the available capacity. Many online
services and applications like search, email, cloud storage
etc., want geo-replication to improve performance (closer to
users) and reliability (robustness against single-DC failure).
Given this, cloud providers set different data replication SLAs
(or deadlines) for different applications based on factors such
as their delay tolerance and price (paid by customers).

Typical data transfer sizes between DCs range from tens
of terabytes to petabytes; deadlines range from an hour to a
couple of days [13]. For example, a web search application
must update and propagate a new index once every 24 hours
across DCs. A web document application must geo-replicate
user data once every 2 hours to ensure that only the changes in
the most recent 2 hours could be lost due to single DC outage.
A key characteristic of such transfers is that they are elastic
to bandwidth allocation as long as they complete before
the deadlines. Missing deadlines will violate the application
SLAs and greatly degrades application performance.

However, state-of-the-art solutions and the current prac-
tice, such as rate limiting, TE [8, 9, 13], and network vir-

tualization approaches [2, 6, 23], are all insufficient when
handling deadline-based Inter-DC transfers.

Public inter-DC rate limiting does not respect deadlines.
Rate limiting provides isolation among flows, but it is far
from deadline guarantee. Even with rate limiting, the inter-
DC transfer time is highly variable, as shown in our AWS
measurements. Meeting deadlines requires fine-grained ser-
vice differentiation. However, the current practice does not
differentiate among different traffic classes.

Private inter-DC TE techniques do not guarantee dead-
lines. SWAN and B4 take a TE approach to improve the
inter-DC WAN network utilization. They consider traffic
characteristics and priorities (e.g., interactive > elastic >
background) to enhance application performance. However,
such prioritization is too coarse-grained and does not guar-
antee any specific transfer deadlines. Because there exists no
interface for tenants to specify their transfer deadlines, and
the provider has no way to honor them. In our evaluation
(§8.4) we find that a large portion of transfers will miss their
deadlines in SWAN.

Tempus [13] is deadline-aware and promises each request
a maximal fraction of transfer before deadline without guar-
anteeing the completion, especially when demand exceeds
the network capacity. However, for many applications, partial
data transfer is useless as the applications move forward up
on the completion of last byte of the last flow. As a result, this
paper focuses on how to fully utilize the WAN bandwidth
to guarantee the completion of as many transfers as possible
before deadlines.

Applying solutions for intra-DC to inter-DC are insuffi-
cient to ensure high WAN utilization. The bandwidth guar-
antee provided by virtual network abstractions [2, 6, 23], such
as the hose model, supports transfer deadlines by guarantee-
ing minimum bandwidth. However, when applied to inter-DC
WAN, they are insufficient to fully utilize the WAN band-
width. The reason is that these pre-determined bandwidth
reservation models (either static [2, 6] or time-varying [23])
are less flexible than the deadline based reservation. They
provide fixed bandwidth guarantees over time while our de-
sign focuses on guaranteeing the total transfer volume given a
deadline. Their models place a more stringent requirement at
the admission time, while our model is more flexible because
the bandwidth allocation can change over time as long as
the total volume is delivered within the time limit. In our
evaluation (§8.3), we find that pre-determined bandwidth
reservations under-utilize the WAN resources, leaving many
transfer requests unsatisfied.

4. Deadline-based Abstraction
The overarching goal of our work is to seek a user-provider
interface and a mechanism to fully utilize the expensive WAN
bandwidth to meet deadlines for as many transfers as possible.
Realizing this needs an abstraction satisfying two objectives:

1. Expressive specification: The abstraction must allow ten-
ants to easily express their deadline requirements in an
explicit fashion to ensure application-level SLAs [10].

2. Provider flexibility: The abstraction must provide flex-
ibility in provider’s resource allocation. Leveraging its
flexibility, the provider is then able to maximize the uti-
lization of the expensive inter-DC WAN, and at the same
time accommodate as many deadline transfers as possible.

To this end, we present DNA, an explicit deadline-based
network abstraction, that allows the tenants to directly express
their transfer deadlines.

Transfer: A transfer represents a tenant’s data delivery
demand from a source DC to a destination DC. Note that this
captures a tenant-level aggregate demand between a pair of
DCs. Scheduling individual flows within a tenant is handled
by tenants, which is not the fcous of this paper. A transfer, T ,
is specified as a tuple {src, dst,Q, ts, td1, td2}, where src
and dst are the source and destination DCs, Q is the data
volume, ts is the starting time, and (td1, td2) captures the
deadline, either hard or soft. Specifically, td1 represents the
completion time before which the transfer suffers no utility
loss, and after td1, the utility degrades gradually to 0 at time
td2. Note that, if td1 = td2, it indicates a hard deadline. A
similar model has been adopted in Tempus [13] as well.

Request: A tenant may have multiple co-related transfer
demands across many DCs. For example, when running
MapReduce as a single geo-distributed operation across
DCs [11], multiple shuffle transfers from several mappers
to a reducer are barrier synchronized, and the completion of
a single transfer does not improve the job completion time.
To this end, DNA allows tenants to specify such a demand
by submitting a request R = {T1, · · · , Tn}, where each Ti
is a transfer. The provider accommodates all transfers of a
request in an atomic fashion.

5. AMOEBA
In this section, we introduce Amoeba, a system that imple-
ments DNA. We set up the following objectives for Amoeba.

• High WAN utilization & acceptance rate: The system
must fully utilize inter-DC WAN bandwidth to maximize
the acceptance rate of tenant requests with deadlines,
which is also the chief design goal of this paper.

• Ensure coexistence: The system must work with all types
of traffic. Interactive traffic must be delivered without any
delay, while background traffic is served in a best-effort
manner.

• Handle dynamics: The system must be able to handle
network dynamics and be robust to failures and mispre-
dictions in interactive traffic. Temporal variations in inter-
active traffic demand and network failures are the major
sources of dynamic events that the system must deal with.

Figure 2. System model

• Scalability & deployability: The admission control de-
cision must be made in near real-time upon request. The
enforcement of delivery schedule must also be done in a
scalable fashion to support many transfers and to scale up
to tens of DCs. For practical deployment, the system must
not require modification to existing network devices.

5.1 System Overview
In general, Amoeba implements a two-level bandwidth shar-
ing policy. First, priority classes are enforced (i.e., interactive
> deadline transfers > background) and bandwidth is allo-
cated in strict precedence across these classes. Second, within
the deadline transfer class, bandwidth is scheduled to meet
the deadlines of the transfer requests.

Figure 2 illustrates the system architecture of Amoeba,
which contains a logically centralized controller and site
brokers. The central controller is the core of Amoeba and
orchestrates all network activities1. To be fault-tolerant, the
controller is replicated across multiple DCs, and one of them
is elected as master using distributed consensus protocols
such as Paxos [14]. The controller maintains global informa-
tion about the network bandwidth and traffic demand, and
performs the spatial-temporal resource allocation (§5.2). A
site broker, located in each DC, is a local representative. It
predicts and reports interactive traffic for a local DC to the
central controller periodically, and coordinates the bandwidth
enforcement to realize the decision made by the controller.
Note that the bandwidth is fixed within a timeslot, but varies
across different timeslots. We set the timeslot to 3-5 min-
utes in our implementation to achieve a reasonable balance
between performance and overhead, similar to SWAN [8].

Amoeba works as follows. When a new request arrives,
the controller quickly determines if the request can be admit-
ted in an online fashion (§5.2.1). The design of our spatial-
temporal resource allocation also considers handling practical
system factors, such as mispredictions (§5.2.2) and failures
(§5.2.3). For each accepted request, before the beginning of
each timeslot, the controller will inform the site brokers of the

1 The control latency introduced by the centralized control is acceptable
for large transfers, and therefore centralized resource allocation is widely
adopted for large transfers in inter-DC WAN recently [8, 13, 15, 16].
Amoeba follows this trend.

actual bandwidth allocated to each request. The site brokers,
in turn, enforce this via host/hypervisor-level rate limiting.
In practice, any distributed rate limiting solutions [18] can
be applied to translate aggregate tenant-level allocations into
flow-level allocations for practical enforcement. In our imple-
mentation, the end hosts perform per-flow rate limiting and
the site brokers ensure that the sum of individual flow rate
does not exceed the aggregate tenant-level allocation.2

5.2 Spatial-Temporal Allocation
5.2.1 Admission Control
Similar to bandwidth guarantee services provided in intra-
DC networks [2, 6, 23], the admission control of Amoeba is
performed in a first-come first-served (FCFS) manner, and no
preemption is allowed. To make effective online admission
decisions, the key to our admission control algorithm is
to balance scalability and optimality. On one hand, the
algorithm can be fast if we simply assume all the previous
request schedules are fixed and perform allocation on the
new request with the residual bandwidth. However, this is
sub-optimal. As we will show in §8.6, Amoeba can bring 7%-
12% performance improvement over such a solution. On the
other hand, the algorithm can be optimal if for any incoming
new request, all existing requests, together with the new one,
are rescheduled. However, this is time-consuming. As we
will show in §8.5, such an algorithm takes tens of seconds
per allocation, and the time cost increases dramatically as
flow arrival rate increases. Furthermore, we note that the
all-or-nothing nature of guaranteeing transfer completion in
Amoeba makes it hard to optimize as it cannot be captured
with a linear constraint. Thus, the optimization framework
developed for fractional allocation in Tempus [13] cannot be
directly adopted for Amoeba.

Our algorithm seeks a tradeoff between scalability and
optimality. We briefly summarize the high-level idea of our
algorithm here and defer the details to §6.

1. When a request arrives, we quickly find out a schedule
with completion time t′ as early as possible, assuming
all previous decisions are fixed. We refer to this step as
adaptive scheduling (AS, §6.1). AS essentially tries to use
residual network capacity to quickly accept a request by
solving a min-cost flow problem (§6.1). For a request, if
it can be satisfied at this step (i.e., t′ ≤ td1), go to step 3;
otherwise, go to step 2.

2. We try to reduce the completion time t′ by reschedul-
ing bandwidth schedules of previously accepted requests
without violating their deadlines. Opportunistic reschedul-
ing (OR, §6.2) is designed to select a small subset of
previous schedules that are most relevant to the current
request and performs a cost-effective joint rescheduling.

2 An alternative way is to rate limit the aggregate tenant-level allocation
on switches. However, the number of transfers that can be rate limited is
bounded by the number of policers on the switch [23];

This increases the chance of reducing t′ while being com-
putationally more efficient than considering all previous
requests. After performing OR, if we can at least accom-
modate it as a soft deadline request (i.e., t′ ≤ td2), go to
step 3; otherwise, go to step 4.

3. Accept the request with a guaranteed transfer time of t∗ =
max{td1, t′}. If the original request is a soft-deadline
request, this step transforms it to a hard-deadline request
with t∗ as the guaranteed deadline. Given t∗, the central
controller calculates an initial bandwidth schedule that
meets this deadline (§6.3). This initial schedule is subject
to changes when handling future requests, mispredictions,
and failures.

4. Reject the request. Note that a rejected request can be
submitted again later.

Our evaluations in §8 show that our algorithm strikes a
good balance between scalability and optimality. Amoeba
achieves 30× speedup at the cost of sacrificing only 3% in
performance compared to a global optimal strategy.

5.2.2 Handling Mispredictions
According to our experiences with production DCs and prior
work [8], interactive traffic takes only a small portion of the
overall Inter-DC traffic, e.g., 5%−15%. While the interactive
traffic demand is bursty and highly diurnal, the average
volume over a 5 minute window is relatively stable and can
be largely predicted [8]. However, misprediction is inevitable.
Without proper handling, it may degrade the quality of
service. In particular, extra interactive traffic can preempt
the bandwidth allocated to deadline transfers as interactive
traffic has higher priority, which may cause accepted requests
to miss their deadlines.

We address this problem by setting aside different head-
rooms for different timeslots proportional to how far away
the timeslot is. This is motivated by our observation that the
degree of misprediction may be large for a timeslot far into
the future, but gradually becomes more accurate as it comes
closer. For example, for the next timeslot, the headroom can
be just 5% of the predicted interactive traffic, whereas for a
timeslot an hour later, the headroom can be set to 15% of
the predicted interactive traffic. Through this approach, we
can safely accept requests for future timeslots. As time ad-
vances, the overprovisioned headroom of a timeslot can be
released for accepting new requests or speeding up existing
requests. To prevent resources from being wasted, we period-
ically run an algorithm similar to OR at the beginning of each
timeslot and move allocation towards the current timeslot
opportunistically.

Furthermore, interactive traffic may surge inside a timeslot.
In Amoeba, the site broker is in charge of this. The basic idea
is that interactive traffic can borrow bandwidth from deadline
transfers whenever needed, and return in the future. More
specifically, the site broker maintains a record of the interac-

tive “debt” of each destination for each bandwidth allocation
cycle (i.e., 10 seconds). It keeps monitoring the interactive
traffic fluctuation: if the headroom cannot absorb the inter-
active fluctuation to a destination, it dynamically decreases
bandwidth from user request with the same destination and
farthest deadline; the debts are paid back when the interac-
tive traffic becomes lower than the headroom. Note that such
debts can be transferred between timeslots so that even large
interactive surges can be handled.

In addition, Tenant’s demand specification can be inaccu-
rate. Amoeba simply handles this as follows. For an over-
estimated request, the over-estimated part can be reclaimed
once reported, and the tenant will be charged partially for this
part. For an under-estimated request, the additional demand
will be treated as a new request for allocation. If the new
request cannot be satisfied, the tenant will be informed and
it is up to the tenant whether the transfer should continue. If
not, the tenant only pays for the transferred amount.

5.2.3 Handling Failures
In Amoeba, link/switch failures can be detected and commu-
nicated to the controller by the site brokers according to the
framework introduced in [8]. However, when failures happen,
Amoeba may not be able to satisfy all the requests that have
been accepted. In this case, Amoeba has to remove some
accepted requests. However, obtaining an optimal solution
(either minimizes throughput loss or minimizes the number
of removed requests) requires solving an integer linear pro-
gram (ILP) which is NP-hard. Instead, we perform online
rescheduling similar to our admission control. First, we re-
move all the requests that pass through the failed link, and set
the residual bandwidth as the available bandwidth after fail-
ure. Then, we treat these removed requests as new requests
and perform admission control one by one according to their
arrival times. Moreover, failures of the central controller and
site broker are handled in a similar way as in [8].

5.3 Pricing Model
We discuss a simple pricing model to encourage tenants to
reveal their authentic transfer requirements to the provider,
i.e., class, volume, and deadlines.

Encouraging true class declaration can be done by simply
setting a “higher price for better service” policy. Interactive
traffic is assigned the highest priority, thus deserves the
highest unit price (price per GB) pint. Background traffic
receives a best-effort service, and should be charged at the
lowest unit price pbck. Deadline transfer lies in-between,
and its unit price pddl(·) varies depending on both volume
and deadline. To distinguish different classes, we simply set
pint ≥ pddl(·) ≥ α ∗ pint and β ∗ pddl(·) ≥ pbck

3, where
α, β ∈ (0, 1) can be flexibly adjusted according to the supply-
demand relationship.

3 We use “≥” as pddl(·) varies and we only restrict the upper/lower bound.

Encouraging true volume declaration is also simple. For
under-claimed requests, the extra volume beyond requested
is handled as background traffic in a best-effort manner; For
over-claimed requests, the unused bandwidth can be exploited
by background traffic, but the tenant should pay for the entire
volume claimed.

Encouraging true deadline declaration is necessary: con-
sider two requests transferring the same amount of data from
site A to site B with deadlines of 2 timeslots and 20 times-
lots respectively; although they transfer the same volume,
the pressure they exert to the network is different. Thus, the
charging of the deadline traffic should depend on both vol-
ume Q and deadline guaranteed t∗. For this, we can use the
expected bandwidth B = Q/t∗ as the criteria for charging,
i.e., pddl(·) should be a non-decreasing function of B. Note
that users may reduce their costs by splitting their requests
into smaller chunks and use the same deadline for all chunks.
However, it is risky to do so because some chunks may be
rejected. Moreover, a lower bound on the smallest chunk size
can be set in order to regulate user requests.

Moreover, such a pricing model also helps to substantiate
the benefit brought by our deadline guarantee service. As
we will show in the evaluation, Amoeba results in 60%
higher network throughput than fixed bandwidth abstrac-
tions (§8.3), and achieves much higher goodput (throughput
of transfers that meet their deadlines) compared with prior
deadline-oblivious Inter-DC TE solutions (§8.4). Under the
above pricing model with α = β = 0.5, the performance im-
provement can directly translate to over 40% higher provider
revenue compared to both fixed bandwidth abstractions and
deadline-oblivious Inter-DC TE solutions.

Utility function: Different tenants may desire different
utility functions describing their utility decrease from td1 to
td2. Amoeba can be easily extended to account for arbitrary
utility functions. More specifically, the benefit of a tenant
equals the utility minus the payment, and both the utility and
the payment are functions of the guaranteed transfer time
t∗. Thus, instead of setting t∗ = max{td1, t′} (step 3 in
§5.2.1), Amoeba can calculate the best t∗ which maximizes
the tenant’s benefit. Moreover, it is also possible to accept
an incoming request by delaying the completion of some
accepted ones, as long as it increases the overall benefit. We
consider these extensions as our future work.

6. Algorithm Details
We elaborate the algorithm in §5.

6.1 Adaptive Scheduling (AS)
AS tries to embed a new request R into the WAN substrate
along two dimensions, time and space, without changing the
bandwidth schedules of existing requests. To do so, we keep
track of the residual bandwidth on each link, and denote the
residual bandwidth of link l at time t as Rl(t). To determine
the feasibility and routing paths, we solve a min-cost flow
problem on a temporally expanded flow graph.

S2

S1

D2

D1

s D

DC11 DC21

DC31 DC41

Timeslot 1

Timeslot 2

Timeslot 3

DC12 DC22

DC32 DC42

DC13
DC23

DC33 DC43

Substrate Link

Virtual Link (Transfer Level)

Virtual Link (Request Level)

Datacenter Node

Super Node (Transfer Level)

Super Node (Request Level)

Figure 3. Creating temporally expanded flow graph for
adaptive scheduling over multiple timeslots.

Creating the expanded flow graph: First, we construct
a flow graph G by creating a virtual node for each DC at
every timeslot, as shown in Figure 3. Each virtual node
DCn,t represents a DC n at timeslot t. In each timeslot, these
virtual nodes are connected to each other just as they were
in the original inter-DC topology. Each link l between two
virtual nodes of the same timeslot t is assigned a capacity of
c(l) = Rl(t).

Second, we add a pair of super nodes Si and Di for each
transfer Ti in R, and connect Si to all source DCsDCj,t with
timeslot t inside Ti’s possible transmission period [ts, td2] .
We then connect the destination DCs to Di in a similar way.

Finally, we add a source node S and a sink node D in the
graph, and connect all Sis and Dis to S and D respectively.
The link capacity c(l) of each link is set to Qi. Such time
expansion can be regarded as a variation of the technique
introduced in [5].

Figure 3 shows an example to expand a request R
over 3 timeslots, where R includes two transfers T1 =
{DC1, DC4, Q1, ts = 1, td1 = 2, td2 = 3} and T2 =
{DC1, DC2, Q2, ts = 2, td1 = 2, td2 = 3}. T1 is expanded
over timeslot 1 to 3, and T2 is expended over timeslot 2 to 3.

Finding the shortest possible completion time: Given G,
we approximate the minimal completion time by assigning
different weights to edges in the flow graph, and then solving
the corresponding min-cost flow problem (problem formu-
lation in Algorithm 1). More specifically, for each edge l
from Si to the source DCj,t, we assign weight w(l) = 2t−ts.
Through this way, the solution to Algorithm 1 tends to pack
more flows in the earlier timeslots in order to minimize the
cost. Note that we use only k-shortest paths between each
source-destination DC pairs as input of Algorithm 1. This
reduces the number of rules enforced in each switch and
simplifies data plane updates4. In our simulation in G-scale
topology, we find that k = 10 already results in negligible
loss on both request acceptance rate and throughput.

4 Moreover, AS is essentially a multicommodity flow problem, and it is
equivalent to the min-cost flow presentation (the LP formulation is the same)
with path constraint.

Input: R = {T1, T2, ...Tn}: A tenant request with n transfers;
Pi = {p1, p2, ...pk}: k-shortest paths between the DC pair
of transfer i ∈ [1, n];
Ipm,l: 1 if l ∈ pm; and 0 otherwise;
c(l): residual link capacity for link l in the expended graph;

Output: Return the latest timeslot t′ in the solution of the following
problem;

minimize
∑

i,t,pm

∑
l∈E w(l) · fitpm · Ipm,l

s.t.
∀l, t,

∑
i

∑
pm∈Pi

fitpm · Ipm,l ≤ c(l)

∀i, t, pm, fitpm ≥ 0
∀i ∈ R,

∑
t

∑
pm∈Pi

fitpm = Qi

% fitpm : the allocation to the flow over path pm ∈ Pi in timeslot t
for transfer Ti;

Algorithm 1: Min cost flow formulation on the expended
flow graph

t
td2ts

t

Li
n

k
 C

a
p

a
ci

ty

Li
n

k
 C

a
p

a
ci

ty

A B

D

td2ts

CA D

Local

Stretching

C A B

d t

B C

d

Figure 4. Local stretching implements OR

After AS, if the completion time t′ ≤ td1, then the
provider will accept the request with deadline td1 directly.
Otherwise, we proceed to OR, where we try to further reduce
t′ by rescheduling existing accepted requests.

6.2 Opportunistic Rescheduling (OR)
OR reschedules existing requests to achieve better t′ for
the new one. We design a two-step heuristics for OR: local
stretching and joint rescheduling.

Local stretching is a simple greedy algorithm. As illus-
trated in Figure 4, to accommodate request R, we “shift” the
bandwidth schedules of previous requests out of R’s time
window [ts, td2]. This is performed on every path that R
passes through. By local stretching, we set aside more resid-
ual bandwidth to accommodate R. Thus, when performing
AS again, it is more likely to reduce t′. If t′ is still larger than
td1 after local stretching, we proceed with joint rescheduling.

Joint rescheduling is a partial optimization, in which we
select some existing requests to do coordinated rescheduling
together with the new one, i.e., running AS on all these re-
quests collectively. Note that the time cost of AS is related to
the number of requests. Therefore, instead of considering all
existing requests, the idea is to find a subset of most relevant
requests to reschedule so that the chance of further reducing
the completion time t′ of the new request maximizes.

Request selection: For each transfer Xi in R, we define
a scoring metric, S(Xi, Yj), between Xi and an existing ac-

cepted transfer Yj to estimate Yj’s rescheduling effectiveness,
i.e., how much Yj’s rescheduling will help in reducing t′ of
Xi. S(Xi, Yj) is related to the following two factors:

1. The possibility that Yj’s traffic can be shifted out of
Xi’s transmission window [ts, td2]. We estimate this as
tdj−tsj
t+−t− , where [tsj , tdj] is the transmission range of Yj ,

and [t−, t+] is the overlapping time period of Xi and Yj’s
transmission time.

2. The amount of Yj’s traffic that goes through Xi’s bottle-
neck link. This is quantified by the amount of Xi and Yj’s
traffic that goes through the same link weighted by the
link’s utilization:

t+∑
t=t−

∀pm∈P(Yj)∑
l∈pm

(Ul(t) · Il,Xi · Il,Yj · fjtpm);

where Il,Xi
/Il,Yj

indicates whether link l is used in
Xi/Yj , and P(Yj) is the set of k-shortest paths from srcj
to dstj in Yj , and Ul(t) is the link utilization of l.

For each transfer Xi ∈ R, we select a set of n existing
requests that have the highest scores, denoted as Hn(Xi).
We then define the set of n highly relevant requests with R,
Hn(R), as ∪Xi∈RHn(Xi).

Partial optimization: We create a new request R′ =
Hn(R) ∪ R. We run AS over R′ on the WAN substrate
where the residual link capacities are obtained by removing
the requests in Hn(R). Then, AS tries to accommodate all
transfers in R′. If it fails, we finally reject R.

6.3 Bandwidth Schedule
For each accepted request with guaranteed deadline t∗, the
controller calculates a bandwidth schedule that meets t∗ and
updates the residual bandwidthRl(t) accordingly. Note that a
deadline t∗ may correspond to many feasible spatial-temporal
schedules, and different schedules may have different impacts
on the admission control of future requests.

To increase the chance of accepting future requests using
AS only (time-efficient), a heuristic is that for each new
request, AS should minimize the link utilization across all
involved timeslots. That is, we always try to allocate a request
with shorter paths. This is realized by assigning each link with
an uniform link weight of 1, and then solve the corresponding
min-cost problem in Algorithm 1 with an extra constraint
t ≤ t∗. In this case, the bandwidth schedule may not always
favor earlier time slots. Therefore, in our implementation, at
the beginning of each timeslot if Amoeba detects available
bandwidth in the current slot, it runs an OR alike heuristic to
pull more traffic from the future timeslots back to the current
one, in order to fully utilize the bandwidth.

7. Implementation
Our prototype consists of the controller, site brokers and
enforcement modules. We implement our algorithm in §6 for

Figure 5. Implementation & Testbed

the controller and site brokers. For routing enforcement we
use the SDN technology, and for bandwidth enforcement we
leverage the Linux Traffic Control (TC).

Amoeba’s bandwidth enforcement consists of a kernel
module and an enforcement daemon, as shown in Figure
5. The enforcement daemon communicates with the kernel
module via iotcl. The enforcement daemon interacts with the
site brokers to obtain VM-level rate limits. It is responsible
for managing the flow table, such as inserting, updating or
deleting flow marking rules. The kernel module is located
between TCP/IP stack and the Linux TC module. The kernel
module intercepts all outgoing packets and modifies the
nfmark field of socket buffer after looking up the flow table.
Then these packets are directed to TC for rate limiting. In
virtualized environments, we envision that the kernel module
runs in the hypervisor and Dom0 to control all traffic going
through physical NICs.

To perform distributed per-flow rate limiting on end hosts,
we leverage the Hierarchical Token Bucket (HTB) in TC.
We use the two-level HTB: the leaf nodes enforce per-flow
rates and the root node classifies outgoing packets to their
corresponding leaf nodes based on nfmark field which has
been modified by Amoeba kernel module.

To make sure that the overhead of Amoeba’s enforcement
module is negligible, we measure the extra CPU usage it
introduces. We generate more than 900Mbps of traffic with
more than 100 flows on a Dell PowerEdge R320 server with
8GB of memory and a quad-core Intel E5-1410 2.8GHz CPU.
The extra CPU overhead introduced is around 3% compared
with the case that Amoeba’s enforcement module is not used
(no rate limiting). The throughput remains the same in both
cases.

8. Evaluation
In this section, we answer five specific questions through
extensive evaluations:

• Does Amoeba provide deadline guarantees for inter-
DC transfers in practice? In §8.2, we show that Amoeba
guarantees deadlines for all accepted requests, and all
flows complete within the scheduled time given by the

controller. We also show that Amoeba ensures this while
achieving no worse (much better in some cases) network
utilization than the state-of-the-art solutions.

• How does Amoeba compare with existing solutions
that provide a fixed minimum bandwidth guarantee?
In §8.3, we show that Amoeba achieves up to 60% higher
utilization while satisfying up to 15% more requests with
deadlines.

• How does Amoeba compare with existing SDN-based
inter-DC TE solutions? In §8.4, we show that Amoeba
accommodates 60% more requests with deadlines while
achieving similar levels of utilization.

• How effective is Amoeba and how scalable is it? In
§8.5, we show that our heuristics make reasonable trade-
offs. They achieve 30× speedup at the cost of sacrificing
only 3% of network utilization compared to a strategy
which tries to find an optimal schedule.

• How do Amoeba’s components contribute to perfor-
mance and computational cost? In §8.6, we show the
performance breakdown of each component, present some
results on misprediction and failure handling, and analyze
the effect of supporting soft deadlines.

8.1 Evaluation Methodology
We evaluate Amoeba with both testbed experiments and sim-
ulations. On the testbed, we show the overall performance of
Amoeba and also demonstrate that the obtained schedules
from our algorithm can be effectively enforced. Through sim-
ulations, we unravel the details of Amoeba across different
settings, topologies, and workloads.

Testbed setup: We build a small testbed with 30 servers
to emulate an inter-DC WAN with 6 DCs as in Figure 5.
Each DC has 5 physical servers and a Pronto 3295 48-port
Gigabit Ethernet switch. The switch has installed PicOS 2.0.4
system which supports both Layer2/Layer3 and OpenFlow.
Each inter-DC link is emulated using one physical 1G link.
The central controller locates in DC 1 and we add a delay
to emulate the WAN environment. The OS of each server is
Debian 6.0 64-bit version with Linux 2.6.32 kernel. Each
server has a qual-core Intel E5-1410 2.8GHz CPU, 8G
memory, 500GB hard disk with 1G Ethernet NIC. The CPU,
memory or hard disk is not a bottleneck in our testbed
evaluation. We use iperf to generate TCP flows.

Simulation Setup: We simulate two production inter-DC
WANs: (i) G-Scale, Google’s inter-DC WAN with 12 DCs
and 19 inter-DC links [9], and (ii) IDN, with 40 DCs, each
connected to 2-16 other DCs [8]. We assume that each link
has a uniform capacity of 160 Gbps. Interactive traffic on
each link is randomly generated between 5% and 15% of the
link capacity for each timeslot, which is also assumed to be
the predicted interactive workload. Based on such predicted
workload we leave extra headroom and keep updating the
headroom as we discussed in §5.2.2. Each run simulates 150

5-minute timeslots (about 12 hours). We report the average
of 5 runs.

Metrics: We measure three performance metrics: network
utilization (i.e., the average link utilization of interactive
traffic and all accepted requests), request acceptance/rejection
rate, and network throughput.

Workload: The inter-DC deadline traffic demand is gener-
ated with the following parameters:

• Request arrival time is modeled as a Poisson process with
arrival rate λ per timeslot.

• Deadlines: The maximum transfer time without utility
loss, i.e., td1 − ts, is modeled under exponential distribu-
tion with a mean of one hour, and the deadline td1 can
be calculated accordingly. We consider soft deadlines in
§8.6.

• Transfer volume is the total data volume needs to be trans-
mitted for each transfer. As transfer volume and trans-
mission time are usually related, we define the average
transfer throughput of a transfer as the transfer volume
over the transfer time td1 − ts, and model this parameter
under exponential distribution with a mean of 20 Gbps.
The transfer volume can then be calculated accordingly.

• Number of transfers per request: each request contains
1-6 transfers.

8.2 Testbed Experiments
We perform experiments on our testbed for a duration of 50
3-minute timeslots (2.5 hours). At any given time, the actual
traffic per DC-pair is composed of 20 to 200 TCP flows.
Our experiment results demonstrate: 1) Amoeba guarantees
deadlines by generating effective bandwidth schedules and
accurately enforcing the schedules at each timeslot; and 2)
Amoeba delivers higher utilization/throughput compared
to others, including solutions that provide fixed minimum
bandwidth (Fixed) and SDN-based TE (SWAN).

To demonstrate that Amoeba performs effective band-
width schedules and accurate real-time enforcement, we show
the difference between the scheduled bandwidth allocation
and the throughput actually measured in the experiment in
Figure 6 (a). We observe that for more than 95% of requests,
the difference is less than 5%. In addition, Figure 6 shows that
for a majority of flows, the completion times on the testbed
matches their schedules (note one flow lasts at least for one
timeslot). Furthermore, we note that the throughput measured
is slightly higher (and the completion time is slightly smaller)
than scheduled. One possible reason is that the completion
time measured by iperf is the time to copy data from user
space to kernel space at sender side, which is smaller than
that from user space of sender side to user space of receiver
side (i.e., the actual completion time), especially for short
flows.

We further compare Amoeba with two baseline algo-
rithms (Fixed and SWAN) in terms of throughput/utilization

0.9 1 1.1 1.2
0

0.2

0.4

0.6

0.8

1

Measured/Scheduled Throughput

C
D

F
 (

flo
w

s)

Amoeba
Fixed
SWAN

(a)Throughput deviation

−15 −10 −5 0 5
0

0.2

0.4

0.6

0.8

1

Actual Completion Time − Scheduled Completion Time (s)

C
D

F
 (

flo
w

s)

Amoeba
Fixed
SWAN

(b)Completion time deviation

Figure 6. Deviation between schedules and testbed results

0 10 20 30 40 50
0

5

10

15

Timeslot

T
hr

ou
gh

pu
t (

G
bp

s)

Fixed
Amoeba

0

20%

40%

60%

80%

100%

Fixed Amoeba

A
cc

ep
ta

nc
e

R
at

e

(a) Amoeba vs. Fixed

0 10 20 30 40 50
0

5

10

15

20

25

Timeslot

T
hr

ou
gh

pu
t (

G
bp

s)

SWAN Effective
SWAN Total
Amoeba

(b) Amoeba vs. SWAN

Figure 7. Experiment results

in Figure 7. Figure 7 (a) shows that Amoeba achieves around
40-50% higher throughput than Fixed. This is mainly because
Amoeba has the flexible DNA model. The higher utilization
translates to higher acceptance rate. As shown in the figure,
Amoeba has an acceptance rate of 89%, whereas the accep-
tance rate for Fixed is 72%. Figure 7 (b) shows the results
for SWAN versus Amoeba. SWAN achieves a slightly bet-
ter throughput/utilization than Amoeba. However, SWAN
is deadline-agnostic and many flows miss their deadlines
despite of the higher total throughput. In terms of the effec-
tive throughput (i.e., the throughput of flows that meet their
deadlines), SWAN is less than half of Amoeba.

8.3 Amoeba vs. Fixed Minimum BW Guarantee
We compare Amoeba with Fixed using large-scale simula-
tions. We generate requests with randomly selected sources
and destinations in both IDN and G-scale topologies. The
request arrival rate for IDN is higher because IDN is larger
than G-Scale5. The minimum bandwidth guarantee in Fixed
is set to satisfy the deadlines, i.e., Bfix = Q

td1−ts .
Figure 8 (a) and Figure 9 (a) show the rejection rates for

IDN and G-scale respectively. It is obvious that Amoeba
show much better performance than Fixed. In both cases,
Amoeba accepts around 15% more tenant requests than
Fixed consistently. This is because Amoeba resource allo-
cation algorithm fully takes advantage of the malleability
provided by the flexible DNA model. In contrast, in Fixed
the bandwidth reservation is pre-determined and cannot be
changed during runtime, and such inflexibility leads to higher
rejection rate.

5 We set the arrival rate to be at most 8/50 in G-scale/IDN because the
network is already saturated under such rate and higher arrival rate will not
cause obvious changes in network utilization and throughput.

Figure 8 (b)/(c) and Figure 9(b)/(c) show the network uti-
lization and throughput. Due to the same reason as above,
Amoeba outperforms Fixed in both topologies. In many
cases, Amoeba achieves 40%-60% higher network utiliza-
tion than Fixed. In terms of throughput, Amoeba also outper-
forms Fixed by 50%-60% in most cases.

8.4 Amoeba vs. Current Inter-DC TE
We compare Amoeba with deadline-oblivious TE solutions,
such as SWAN [8] and Netstitcher [15], in G-scale topology.
We adopt SWAN’s allocation algorithm per timeslot with an
objective of maximizing the throughput in the current slot.
Netstitcher models the data delivery for each request as a
minimum transfer time (MTT) problem [15]. We approxi-
mate its allocation algorithm for each incoming request. We
define request success rate as the percentage of requests that
meet deadlines. As Amoeba offers deadline guarantees, the
request success rate of Amoeba equals to its request accep-
tance rate.

Note that we omit the comparison between Amoeba
and Tempus [13]. The reason is that Tempus focuses on
fairness and maximizes the minimal fraction among all
transfers delivered until deadlines, but does not guarantee the
completion of any transfer before deadline. When demands
exceed network capacity, Tempus always tries to fairly share
the limited bandwidth among all requests, leading to a very
low or even 0 request success rate.

Figure 10 (a) shows the request success rates for SWAN,
Netstitcher, and Amoeba respectively. As the arrival rate
increases, the request success rate decreases for all three
solutions. However, SWAN and Netstitcher experience a
more dramatic drop than Amoeba. This is because SWAN
greedily allocates requests per timeslot without considering
the deadlines, while Netstitcher only tries to minimize the
transfer time regardless of the deadlines. As a result, as the
arrival rate increases, more requests will miss their deadlines.
We also find that the request success rate of Netstitcher is
higher than that of SWAN. This is because SWAN splits
bandwidth among multiple transfers and it is possible that
very few of them can meet their deadlines when the number
of requests is large. On the other hand, Netstitcher serves
requests in a first-come first-served fashion, and thus the first
few requests can always meet their deadlines.

Figure 10 (b) and Figure 10 (c) show the network utiliza-
tion and throughput. In the figures, total network utilization
refers to the network utilization of all (including partially al-
located) requests, and effective network utilization only refers
to the requests that meet their deadlines. Total and effective
throughput are defined in a similar way. From the figures, we
observe that the deadline-agnostic solutions achieve high to-
tal network utilization and throughput, but very low effective
network utilization and throughput. This result is expected
because they do not respect deadlines. In contrast, Amoeba
maintains much better effective network utilization, as it has a
much higher request success rate by guaranteeing deadlines.

20 30 40 50
0

10

20

30

40

Request Arrival Rate (per timeslot)

R
eq

eu
st

 R
ej

ec
tio

n
R

at
e

(%
)

Amoeba

Fixed

(a) Request rejection rate

15 20 25 30 35 40 45 50
20

40

60

80

100

Request Arrival Rate (per timeslot)

N
et

w
or

k
U

til
iz

at
io

n
(%

)

Amoeba

Fixed

(b) Network utilization

20 30 40 50
5

10

15

20

25

Request Arrival Rate (per timeslot)

T
hr

ou
gh

pu
t (

T
bp

s)

Fixed

Amoeba

(c) Throughput

Figure 8. Amoeba vs. Fixed minimum bandwidth guarantee in IDN topology

2 4 6 8
0

10

20

30

40

50

Request Arrival Rate (per timeslot)

R
eq

ue
st

 R
ej

ec
tio

n
R

at
e(

%
)

Amoeba

Fixed

(a) Request rejection rate

1 2 3 4 5 6 7 8

30

40

50

60

70

80

90

Request Arrival Rate (per timeslot)

N
et

w
or

k
U

til
iz

at
io

n
(%

)

Fixed

Amoeba

(b) Network utilization

2 4 6 8
0

1

2

3

4

Request Arrival Rate (per time slot)

T
hr

ou
gh

pu
t (

T
bp

s)

Fixed

Amoeba

(c) Throughput

Figure 9. Amoeba vs. Fixed minimum bandwidth guarantee in G-Scale topology

2 4 6 8
0

20

40

60

80

100

Request Arrival Rate (per timeslot)

R
eq

ue
st

 S
uc

ce
ss

 R
at

e
(%

)

SWAN
Netstichter
Amoeba

(a) Request success rate

2 4 6 8
0

20

40

60

80

100

Request Arrival Rate (per timeslot)

N
et

w
or

k
U

til
iz

at
io

n
(%

)

SWAN Effective

SWAN Total

Netsticher Effective

Netsticher Total

Amoeba

(b) Network utilization

2 4 6 8
0

1

2

3

4

Request Arrival Rate (per timeslot)

T
hr

ou
gh

pu
t (

T
bp

s)

SWAN Effective

SWAN Total

Netstitcher Effective

Netsticher Total

Amoeba

(c) Throughput

Figure 10. Amoeba vs. deadline-oblivious TE in G-Scale topology

8.5 Effectiveness and Scalability

Effectiveness: To demonstrate the effectiveness of Amoeba,
we compare it with a strawman global optimization algorithm
in G-Scale. Whenever a request comes, the global optimiza-
tion algorithm reallocates all previous requests using a similar
formulation as AS. Figure 11 (a) shows the network utiliza-
tion of Amoeba and the global optimization algorithm (we
observed similar results in terms of request acceptance rate
and throughput as well). We find that Amoeba performs al-
most the same as the global optimization algorithm under
low arrival rate, and is slightly worse than it (by around 3%)
as the arrival rate increases. The reason behind this is as fol-
lows. First, when the arrival rate is low, both algorithms are
able to accept most of the requests, thus achieving almost the
same performance. Second, as the arrival rate increases, there
are more requests to handle. Since Amoeba only reallocates
a subset of relevant requests when handling the new ones
(§6.2), it becomes less effective than the optimal solution

that performs a global reallocation. As a consequence, some
requests accepted by the global reallocation may be rejected
by Amoeba.

In Figure 11 (b) we can see that Amoeba achieves 30×
speedup in terms of average allocation time compared to the
global optimization algorithm. Note that the allocation time
of the global optimization algorithm in Figure 11 (b), i.e., tens
of seconds, might be acceptable for some transfer requests,
however Amoeba can achieve comparable performance in a
much shorter time. And it is always desirable to have shorter
time in admission control for timely decision on user requests.
Furthermore, as the global optimization algorithm requires
reallocation of all previous allocated requests, the time cost
can increase dramatically as the arrival rate increases, which
eventually results in unacceptable allocation time under
higher arrival rate. In this regard, the time cost of Amoeba
increases much slowly as shown in Figure 11 (b).

2 4 6 8
40

50

60

70

80

90

100

Request Arrival Rate (per timeslot)

N
et

w
or

k
U

til
iz

at
io

n
(%

)

Global Reallocation

Amoeba

(a) Network utilization

2 4 6 8
0

5

10

15

Request Arrival Rate (per timeslot)

A
ve

ra
ge

 A
llo

ca
tio

n
T

im
e

(s
)

Global Reallocation

Amoeba

(b) Average allocation time

Figure 11. Amoeba vs. strawman global optimization

0 2 4 6 8
10

−3

10
−2

10
−1

10
0

10
1

Reqeust Arrival Rate (per timeslot)

A
llo

ca
tio

n
T

im
e

(s
)

Gscale

(a) G-Scale

10 20 30 40 50

10
−2

10
0

10
2

Reqeust Arrival Rate (per timeslot)

A
llo

ca
tio

n
T

im
e

(s
)

IDN

(b) IDN

Figure 12. The min/mean/max Amoeba allocation time

2 4 6 8

40

50

60

70

80

90

100

Reqeust Arrival Rate (per timeslot)

N
et

w
or

k
U

til
iz

at
io

n
(%

)

AS

AS + Stretching

Amoeba

(a) Network utilization

2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

Reqeust Arrival Rate (per timeslot)

A
ve

ra
ge

 A
llo

ca
tio

n
T

im
e

(s
)

AS
AS + Stretching
Amoeba

(b) Average allocation time

Figure 14. The incremental benefit of local stretching and
joint rescheduling

Scalability: We quantify Amoeba’s scalability by measur-
ing the allocation time per request in both G-Scale and IDN.
The simulation is performed on a server with 384G memory
and 2 quad-core 2.8GHz Xeon CPUs.

As shown in Figure 12, the average allocation time is
less than 0.5 second in G-Scale and less than 1.5 seconds
in IDN, and the maximal allocation time is only about 6
seconds. The results indicate that the allocation time has
positive correlation with the network size; IDN is larger
and thus has a longer allocation time in general. Another
observation is that the allocation time increases as the arrival
rate increases. This is because most requests can be easily
and quickly allocated using only AS under low arrival rate.
However as the arrival rate increases, the average allocation
time increases since OR is more frequently invoked.

8.6 Component-wise Benchmark

Performance breakdown: We use simulations to show
the benefits of AS and OR individually. Figure 13 shows

2 4 6 8
1

1.5

2

2.5

3

Request Arrival Rate (per timeslot)

T
hr

ou
gh

pu
t (

T
bp

s)

Amoeba with FH
Amoeba with EH

(a) Benefit of EH

2 4 6 8
50

60

70

80

90

100

Reqeust Arrival Rate (per timeslot)

S
ur

vi
va

l R
at

e
(%

)

100% capacity loss
50% capacity loss

(b) Amoeba under link failure

Figure 15. Mispredictions and failures

1 2 3 4 5 6 7 8

30

40

50

60

70

80

90

Request Arrival Rate (per timeslot)

N
et

w
or

k
U

til
iz

at
io

n
(%

)

Hard

Soft

(a) Network utilization

2 4 6 8
0.5

1

1.5

2

2.5

Request Arrival Rate (per time slot)

T
hr

ou
gh

pu
t (

T
bp

s)

Hard

Soft

(b) Throughput

Figure 16. Soft-deadline vs. hard deadline

the gain of AS and Amoeba (AS + OR), and we use
Fixed as the baseline. From the figure, we can see that AS
contributes around 20%-40% performance gain over Fixed
under most arrival rates, and OR can bring additional 7%-12%
performance gain.

We further check the benefits of two operations in OR,
i.e., local stretching and joint rescheduling. Figure 14 shows
the results. Local stretching brings around 2%-4% utilization
gain and 2%-3% improvement in acceptance rate (not shown
in the figure), at the cost of increasing allocation time from
0.02 to 0.1 second on average. Joint rescheduling brings 4%-
8% utilization gain at the cost of increasing allocation time
from 0.1 to 0.4 second on average.

Mispredictions and failures: To show the benefit brought
by Amoeba’s evolving headroom (EH) when dealing with
mispredictions, we simulate a variant of Amoeba with a
fixed headroom (FH). Figure 15 (a) shows that, with EH,
Amoeba can set aside more bandwidth for deadline transfers,
and thus results in 2% higher throughput. Note that this is not
a small number considering that the total interactive traffic
only accounts for 5%-15% of the link capacity.

To test Amoeba under link failure, we use G-Scale and
randomly fail an inter-DC link. Since an inter-DC link can
contain multiple physical fibers [8], we consider two cases:
100% link capacity loss and 50% link capacity loss. We
run the failure handling procedure described in §5.2.2 and
calculate the survival rate, which is the portion of successfully
reallocated requests over all affected requests. Figure 15 (b)
shows the result. We observe that almost all the affected
requests can be successfully reallocated under low arrival
rate. Moreover, Amoeba still achieves over 80% and 90%
survival rate respectively under high arrival rate.

0 2 4 6 8
0

20

40

60

80

Reqeust Arrival Rate (per timeslot)

U
til

iz
at

io
n

G
ai

n
(%

)

AS

Amoeba

(a) Utilization gain (G-Scale)

10 20 30 40 50
0

20

40

60

Reqeust Arrival Rate (per timeslot)

U
til

iz
at

io
n

G
ai

n
(%

)

AS

Amoeba

(b) Utilization gain (IDN)

0 2 4 6 8
0

20

40

60

80

Reqeust Arrival Rate (per timeslot)

T
hr

ou
gh

pu
t G

ai
n

(%
)

AS

Amoeba

(c) Throughput gain (G-Scale)

10 20 30 40 50
0

20

40

60

Reqeust Arrival Rate (per timeslot)

T
hr

ou
gh

pu
t G

ai
n

(%
)

AS

Amoeba

(d) Throughput gain (IDN)

Figure 13. The benefit of the two components of Amoeba

Effect of soft deadlines: So far we assume that all requests
have hard deadlines. We now extend hard deadlines to soft
deadlines, and we use G-Scale in our simulation. In Figure 16,
the red curve shows the performance when all requests are
assigned with hard deadlines, and the blue curve shows
the performance with soft deadlines (20% extension based
on the hard deadlines). We observe that under low request
arrival rate, soft deadlines bring better network utilization
and throughput. This is because a rejected request with a hard
deadline still has a chance to be accepted with a looser soft
deadline.

However, under high arrival rate, soft deadlines do not al-
ways perform better than hard deadlines in terms of through-
put. One possible reason is that many previously rejected
requests are accepted. These requests are “harder” to accom-
modate and less “cost-efficient” (i.e., can only be accepted by
taking some longer paths), thus are likely to hinder some more
cost-efficient requests (requests which are easily accepted us-
ing shorter paths) later on. Therefore, the link capacity are
less effectively used because more requests use longer paths.
Network utilization is not affected by this as the link capacity
are eventually exhausted in both cases.

9. Related Work
There are many related works on datacenter traffic optimiza-
tion or deadline-aware flow scheduling. However none of
them can directly solve our problems in Amoeba.

TE for Inter-DC WAN networks has attracted great interest
recently. B4 [9] presents Google’s inter-DC WAN solution
based on the popular software-defined networking technol-
ogy; its centralized TE drives links to near full utilization.
Similarly, SWAN [8] also boosts the utilization of inter-DC
WAN by scheduling the service traffic in a centralized man-
ner; it further achieves congestion-free and disruption-free
updates. However, they both are deadline-agnostic.

More recently, Tempus [13] has been proposed to max-
imize the fraction of transfer delivered before deadline. It
achieves fairness among all the requests, but does not guar-
antee the completion of any of them. Relative to Tempus,
Amoeba maximizes the number of transfers completed be-
fore their deadlines, which is more suitable for applications
with hard deadlines. Moreover, the abstraction of Tempus

deals with each transfer individually, whereas Amoeba takes
the correlation among multiple transfers into consideration.

NetStitcher [15] focuses on using a store-and-forward
approach to schedule large scale data transfers between DCs,
but without considering any transfer deadlines. In contrast,
Amoeba moves one step further by adding a deadline-
aware transfer interface into the system so that providers
can develop algorithms to better utilize expensive WAN
bandwidth to guarantee transfer deadlines.

In the context of Intra-DC networks, there are several
bandwidth guaranteed abstractions [2, 6, 12, 17, 20, 23]. For
example, SecondNet [6] enforces bandwidth reservation be-
tween every pair of VMs. Oktopus [2] proposes two virtual
cluster (VC) models, one non-oversubscribed and one over-
subscribed of bandwidth. Gatekeeper [20] and EyeQ [12] can
enforce hose model for congestion-free networks. TIVC [23]
tries to catch the time-varying nature of the networking re-
quirement by defining time-interleaved virtual clusters. Elas-
ticSwitch [17] achieves bandwidth guarantee and work con-
servation simultaneously. Our DNA abstraction allows re-
quests to be expressed in terms of the volume of data to be
delivered and the deadlines by which they must be delivered.
This is more appropriate for deadline-driven inter-DC bulk
transfers.

There are new protocols designed to meet the flow dead-
lines (or finish flows faster) in intra-DC networks, e.g., [7, 21,
22, 24]. They are handling flow deadlines at the millisecond
level, and most rely on the short round-trip-time in intra-DC
environment for effective congestion or rate control. The
problem of scheduling large transfers in inter-DC WAN is
fundamentally different, as it operates at a much longer time
scale (with a deadline of minutes or hours) and schedules
requests which are aggregations of many flows [13].

In the context of Grid networks, some works such as [3,
19] have studied the problem of deadline-aware data trans-
fer. However, the discrepancy between the Grid networks
and the inter-DC WANs makes it hard to directly apply their
solutions to our problems in Amoeba. First, they do not
consider practical issues in inter-DC WANs such as traffic
priorities, mispredictions, traffic dynamics and failures. Sec-
ond, the modelings and abstractions in [3, 19] cannot capture
the demands of inter-DC applications, e.g., soft deadlines, and
barrier-synchronized deadline transfers in a request. More-
over, neither of these works achieves a good balance between

scalability and optimality. For example, Chen’s scheduling
algorithm [3] and the SR module in [19] are ineffective as
they assume the previous allocations to be fixed. On the other
hand, the RR module proposed in [19] is too time-consuming
for real-time allocations because it blindly applies a global
optimization.

10. Conclusion
A large portion of Inter-DC transfers have deadlines, however,
currently no mechanism is in place to ensure such deadlines.
This paper introduces a deadline-based network abstraction,
DNA, as an interface that allows tenants to explicitly express
an inter-DC transfer request in terms of the data volume
and the deadline by which it must be delivered. Our system,
Amoeba, performs on-line admission control and enforce-
ment to implement DNA in a scalable manner. Our evaluation
shows that Amoeba effectively accommodates more transfer
requests with deadline guarantees, while achieving around
60% higher network throughput than state-of-the-art band-
width guarantee solutions.

Acknowledgements This work is supported by the Hong
Kong RGC under ECS 26200014, the China 973 Program un-
der Grant No. 2014CB340303 and Ministry of Education Ma-
jor Project No. 313035, the ICT R&D program of MSIP/IITP,
Republic of Korea [14-911-05-001], and the Basic Science
Research Program of NRF funded by MSIP, Rep. of Korea
(2013R1A1A1076024). We thank the anonymous reviewers
for their constructive comments and our shepherd Harsha V.
Madhyastha for his detailed feedback and suggestions, which
improve the content and presentation of this paper.

References
[1] “Why DC-DC WAN optimization is important,” http://ovum.

com/2012/07/16/why-dc-dc-wan-optimization-is-important,
2012.

[2] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “To-
wards Predictable Datacenter Networks,” in SIGCOMM, 2011.

[3] B. B. Chen and P. V.-B. Primet, “Scheduling deadline-
constrained bulk data transfers to minimize network conges-
tion.” in CCGRID, 2007.

[4] Y. Chen, S. Jain, V. K. Adhikari, Z.-L. Zhang, and K. Xu,
“A First Look at Inter-Data Center Traffic Characteristics via
Yahoo! Datasets,” in INFOCOM, 2011.

[5] L. R. Ford Jr and D. R. Fulkerson, “Constructing maximal
dynamic flows from static flows,” Operations research, vol. 6,
no. 3, pp. 419–433, 1958.

[6] C. Guo, G. Lu, H. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “SecondNet: A Data Center Network Virtualization
Architecture with Bandwidth Guarantees,” in CoNEXT, 2010.

[7] C.-Y. Hong, M. Caesar, and P. Godfrey, “Finishing flows
quickly with preemptive scheduling,” ACM SIGCOMM Com-
puter Communication Review, vol. 42, no. 4, pp. 127–138,
2012.

[8] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill,
M. Nanduri, and R. Wattenhofer, “Achieving high utilization
using software-driven WAN,” in SIGCOMM, 2013.

[9] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hlzle,
S. Stuart, and A. Vahdat, “B4: Experience with a Globally
Deployed Software Defined WAN,” in SIGCOMM, 2013.

[10] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and A. Row-
stron, “Bridging the tenant-provider gap in cloud services,” in
SoCC, 2012.

[11] C. Jayalath, J. Stephen, and P. Eugster, “From the Cloud to the
Atmosphere: Running MapReduce across Datacenters,” IEEE
Transactions on Computers, 2007.

[12] V. Jeyakumar, M. Alizadeh, D. Mazieres, B. Prabhakar, C. Kim,
and A. Greenberg, “EyeQ: Practical Network Performance
Isolation at the Edge,” in NSDI, 2013.

[13] S. Kandula, I. Menache, R. Schwartz, and S. R. Babbula,
“Calendaring for wide area networks,” in SIGCOMM, 2014.

[14] L. Lamport, “The Part-time Parliament,” ACM Trans. Comput.
Syst., vol. 16, no. 2, pp. 133–169, May 1998.

[15] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez, “Inter-
Datacenter Bulk Transfers with NetStitcher,” in SIGCOMM,
2011.

[16] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gel-
ernter, “Traffic engineering with forward fault correction,” in
SIGCOMM, 2014.

[17] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, and
Y. T. andJose Renato Santos, “ElasticSwitch: Practical Work-
Conserving Bandwidth Guarantees for Cloud Computing,” in
SIGCOMM, 2013.

[18] B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum, and
A. C. Snoeren, “Cloud control with distributed rate limiting,”
in ACM SIGCOMM Computer Communication Review,vol. 37,
no. 4, pp. 337–348, 2007.

[19] K. Rajah, S. Ranka, and Y. Xia, “Advance reservations and
scheduling for bulk transfers in research networks,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 20, no. 11,
pp. 1682–1697, 2009.

[20] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes,
“Gatekeeper: Supporting bandwidth guarantees for multi-tenant
datacenter networks,” USENIX WIOV, 2011.

[21] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware
datacenter tcp (d2tcp),” in SIGCOMM, 2012.

[22] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better
never than late: Meeting deadlines in datacenter networks,” in
ACM SIGCOMM Computer Communication Review, vol. 41,
no. 4, pp. 50–61, 2011.

[23] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The Only
Constant is Change: Incorporating Time-Varying Network
Reservations in Data Centers,” in SIGCOMM, 2012.

[24] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail:
Reducing the flow completion time tail in datacenter networks,”
ACM SIGCOMM Computer Communication Review, vol. 42,
no. 4, pp. 139–150, 2012.

