IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

579

Guaranteeing Deadlines for Inter-Data
Center Transfers

Hong Zhang, Kai Chen, Wei Bai, Dongsu Han, Chen Tian, Hao Wang, Haibing Guan, and Ming Zhang

Abstract— Inter-data center wide area networks (inter-DC
WANS) carry a significant amount of data transfers that require
to be completed within certain time periods, or deadlines. How-
ever, very little work has been done to guarantee such deadlines.
The crux is that the current inter-DC WAN lacks an interface
for users to specify their transfer deadlines and a mechanism for
provider to ensure the completion while maintaining high WAN
utilization. In this paper, we address the problem by introducing
a deadline-based network abstraction (DNA) for inter-DC WANSs.
DNA allows users to explicitly specify the amount of data to be
delivered and the deadline by which it has to be completed. The
malleability of DNA provides flexibility in resource allocation.
Based on this, we develop a system called Amoeba that imple-
ments DNA. Our simulations and test bed experiments show that
Amoeba, by harnessing DNA’s malleability, accommodates 15%
more user requests with deadlines, while achieving 60% higher
WAN utilization than prior solutions.

Index Terms— Inter-datacenter WAN, deadline, scheduling.

I. INTRODUCTION

LOBAL online services and cloud platform providers,

such as Google, Microsoft, and Amazon, construct
multiple datacenters (DCs) across the world to deliver their
services [1], [2]. The wide area network (WAN) that connects
these geographically distributed DCs is one of the most critical
and expensive infrastructures that costs hundreds of millions of
dollars annually [1]. The shared infrastructure provides transit
services for tenants. In public clouds (e.g., Amazon AWS),
a tenant could be a customer that launches multiple virtual

Manuscript received May 20, 2015; revised November 30, 2015 and
May 2, 2016; accepted July 4, 2016; approved by IEEE/ACM TRANSACTIONS
ON NETWORKING Editor A. Wierman. Date of publication August 18, 2016;
date of current version February 14, 2017. This work was supported in
part by Hong Kong RGC under Grants ECS-26200014, GRF-16203715,
GRF-613113, and CRF-C703615G; in part by the China 973 Program
under Grant 2014CB340303; in part by the Ministry of Education under
Project 313035; in part by the ICT R&D Program of MSIP/IITP, Republic
of Korea, under Grant 14-911-05-001; and in part by the Basic Science
Research Program of NRF within the MSIP, Republic of Korea, under
Grant 2013R1A1A1076024. Part of this work was presented in ACM
EuroSys’16 [37].

H. Zhang, K. Chen, and W. Bai are with The Hong Kong University
of Science and Technology, Hong Kong (e-mail: hzhangan@cse.ust.hk;
kaichen @cse.ust.hk; wbaiab@cse.ust.hk).

D. Han is with the Korea Advanced Institute of Science and Technology,
Daejeon 34141, South Korea (e-mail: dongsuh@ee kaist.ac.kr).

C. Tian is with Nanjing University, Nanjing 210000, China (e-mail:
tianchen @nju.edu.cn).

H. Wang is with the University of Toronto, Toronto, ON MS5S, Canada
(e-mail: wh.sjtu@gmail.com).

H. Guan is with Shanghai Jiao Tong University, Shanghai 200240, China
(e-mail: hbguan@sjtu.edu.cn).

M. Zhang is with Alibaba,
aegiszhang @gmail.com).

Digital Object Identifier 10.1109/TNET.2016.2594235

Hangzhou 311121, China (e-mail:

private clouds (VPC) in multiple DCs. In private clouds (e.g.,
Google and Microsoft’s internal DCs), a tenant could be a
service team that launches multiple VMs globally.

The inter-DC traffic can be broadly classified into three
categories based on time-sensitivity: interactive traffic that is
most sensitive to delay (e.g., 100ms [1]); large transfers which
require delivery within certain time periods (e.g., hours); and
background traffic without strict time requirements [1]-[3].
One key characteristics of inter-DC WAN is that a significant
amount of traffic belong to large transfers and have deadlines,
either hard or soft [1], [4]. Hard deadline means a transfer is
useless to applications once late, whereas soft deadline means
the value of a transfer degrades after the deadline, affecting
application performance (§III).

Thus, providing deadline guarantees for inter-DC transfers
is essential for many applications. To the best of our knowl-
edge, however, no existing mechanism is in place to guarantee
the deadlines:

o In private clouds, state-of-the-art inter-DC traffic

engineering (TE) techniques do not guarantee deadlines.
For example, SWAN [1] and B4 [2] enforce a strict
priority among traffic categories, but do not explicitly
account for deadlines and thus can cause many transfers
to miss their deadlines (§VIII). Tempus [4] maximizes
the minimal fraction of delivery of all transfers until
deadlines, but does not guarantee the completion of any
of them before deadlines (§III).

o In public clouds, the current practice does not even
differentiate among different traffic categories. Our mea-
surements of a real inter-DC WAN show that only rate
limiting is applied to provide isolation across tenants.
In addition, even with the rate limiting, bandwidth varies
dramatically across time and DC sites (§II).

This makes it difficult for critical business applications to
run on top of the infrastructure. As a result, the inter-DC WAN
is under increased pressure to provide service level agree-
ments (SLASs) [5]. The crux is that the current inter-DC WAN
lacks both an interface for tenants to specify their transfer
deadlines and a mechanism for provider to meet the deadlines.
We seek such an interface and a mechanism in this paper. We
aim to fully utilize the scarce WAN bandwidth resource to
guarantee deadlines for as many transfers as possible.

Existing solutions of intra-DC bandwidth guarantees [6]—[8]
cannot be adopted to solve our problem. The reason is that
although these pre-determined bandwidth reservation mod-
els (either flat [6], [7] or time-varying [8]) can guaran-
tee deadlines by providing minimum bandwidth guarantees,

1063-6692 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

580

they cannot fully utilize the WAN bandwidth due to their
inflexibility (§III).

In this paper, we introduce DNA, a Deadline-based Network
Abstraction, tailored for inter-DC WANs. DNA allows tenants
to explicitly express what they want from the network in terms
of the data volume and the deadline by which it must be
delivered. Note that DNA allows bandwidth allocation for a
single request to change over time as long as the total transfer
volume is kept. Such intrinsic malleability enables providers
to schedule the scarce WAN bandwidth in a more flexible and
efficient way based on network conditions. Providers can now
arrange when and how much data to transfer to achieve better
multiplexing and to ensure higher network utilization.

We develop a system, Amoeba, that implements DNA
in a scalable manner. Amoeba employs a temporal-spatial
allocation algorithm for on-line admission control, and our
algorithm strikes a good balance between scalability and
optimality: it achieves 30x speedup in terms of allocation time
at the expense of sacrificing 3% in performance compared to
a global optimal strategy. Amoeba further considers a series
of practical design and implementation issues, e.g., how to
handle network dynamics and be robust to failures and traffic
mispredictions. Finally, we discuss a simple pricing model
to encourage tenants to reveal their authentic requirements
under Amoeba.

In short, this work makes the following contributions:

e Using measurements of a production Inter-DC WAN and
simulations, we reveal that the current Inter-DC WAN
is insufficient to guarantee deadline-sensitive Inter-DC
transfers.

e We introduce DNA, a deadline-based network abstraction
tailored for inter-DC WANSs, and develop Amoeba, a sys-
tem that implements DNA. We deploy Amoeba on a small
testbed emulating a 6-site inter-DC WAN, and evaluate
our design using testbed experiments as well as large-scale
simulations with realistic inter-DC WAN topologies.

e Our evaluation shows that Amoeba accommodates 15%
more transfer requests with deadlines guaranteed than state-
of-the-art solutions, while achieving 60% higher network
utilization. Using a simple pricing model, this directly
translates to 40% more revenue for the provider.

II. MEASURING AN INTER-DC WAN

While prior work [1], [2], [9] describes how TE is done in
private clouds, very little is known about how public clouds
perform. To get a sense of the quality of service of public
clouds, we perform measurements on Amazon AWS intra-
and inter-DC networks. We choose 6 DCs to measure: Virginia
(US east), Oregon (US west), Ireland (Europe), S.Paulo (South
America), Tokyo (Asia) and Sydney (Oceania). In each DC,
we choose 3 machine types whose network performance
metrics are labeled low, moderate, and high.

Our measurement results show the performance heavily
depends on rate limiting, and varies significantly over time
and across DCs.

Rate Limiting: We measure the total TCP throughput when
increasing the number of TCP flows between each pair of

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

— 1000 =
Q. - ra= -
Q e}
2 g0 = 800
5 5
£ £
g 600 g
F 400 =
2 g
§ 200 %
(o)} (o]
2 2

0
123 4 1234567 8 9101112131415
Number of flows (Intra-DC) Number of flows (Inter-DC)

Fig. 1. Aggregate throughput between VMs of high network perfor-
mance type.
TABLE I
THE THROUGHPUT OF INTER-DC FLOWS MEASURED
FROM VIRGINIA (Mbps)
Region
Type Oregon | Ireland | S.Paulo | Tokyo | Sydney
Low 61 58 47 27 29
Moderate 180 150 106 82 69
High 296 223 182 126 107

VMs from 1 to 15. To observe the difference between intra-
and inter-DC traffic, we vary the VM locations. We first
place all VMs in the same DC (Virgina). Then, one VM in
each pair is moved to Ireland. Figure 1 shows the aggregate
throughput between VMs of the high network performance
type. Similar patterns are observed in other types. We make
two observations (which have been confirmed with Amazon
engineers):

o Per-VM rate limiting: The bandwidth is capped at the
same limit for both Intra-DC and Inter-DC (while differ-
ent VM types have different rate limits). As shown in the
figure, the cap for high performance VM type is around
1000Mbps.

o Additional per-flow rate limiting for Inter-DC transfers:
The results in Figure 1 suggest that inter-DC traffic is
rate-limited on a per-flow basis. At the beginning, the
total throughput increases almost linearly to the number
of flows, but eventually reaches the per-VM rate limit.
This is not a consequence of TCP’s per-flow fairness
because the total throughput stabilizes only after a spe-
cific number of TCP flows. We have also verified that
the observed per-flow rate limiting is not due to a small
receive window. For example, the throughput remains the
same when we double the TCP receive buffer.

WAN Performance Variability: Even though strict rate
limiting is in place, inter-DC WAN performance significantly
varies across DCs and over time. We measure the throughput
from VMs in Virginia to VMs in the other five DCs respec-
tively. Table I shows the maximum (stable) throughput over
a 5 minute interval for each VM pair. We find that the through-
put varies between different DCs by a factor of up to 2.8.

Moreover, we measure the throughput from VMs in Virginia
to VMs in the other five DCs every 5 minutes over a
total period of 35 hours. For each pair of VMs, we have
420 measurement points. Table II shows the ratio between
the 95th percentile value over 5th percentile value over the

ZHANG et al.: GUARANTEEING DEADLINES FOR INTER-DC TRANSFERS

TABLE 11
THE INTER-DC WAN PERFORMANCE VARIABILITY ON BANDWIDTH
AND TIME (95TH PERCENTILE VS STH PERCENTILE RATIO)

Region

Variate Oregon | Ireland | S.Paulo | Tokyo | Sydney
Bandwidth ratio 5.05 2.59 2.13 4.01 4.12
Transfer time ratio 2.67 1.43 1.39 1.97 241

35 hours, which varies from 2 to 5. The largest variability
occurs between Virginia and Oregon. One possible cause of
such variability is congestion in inter-DC WAN. However,
we do not observe such high variability for intra-DC VM
pairs. To further quantify the consequence of inter-DC WAN
bandwidth variability, we simply transfer 1GB data between
each VM pair at different time and measure the variations
in completion time. The measurement in Table II shows that
the variation can be as large as 2.67x. This suggests that it is
difficult to ensure timely data delivery for traffic with deadline.

II1. BACKGROUND AND MOTIVATION

Deadlines: The nature of many DC applications
has imposed hard or soft deadlines to a large amount of
inter-DC WAN traffic [1]-[3]. Deadline is important for inter-
DC transfers. The main reason is that the total demand for
inter-DC transfers typically far exceeds the available capacity.
Many online services and applications like search, email, cloud
storage etc., want geo-replication to improve performance
(closer to users) and reliability (robustness against single-
DC failure). Given this, cloud providers set different data
replication SLAs (or deadlines) for different applications based
on factors such as their delay tolerance and price (paid by
customers).

Typical data transfer sizes between DCs range from tens
of terabytes to petabytes; deadlines range from an hour to a
couple of days [4]. For example, a web search application
must update and propagate a new index once every 24 hours
across DCs. A web document application must geo-replicate
user data once every 2 hours to ensure that only the changes in
the most recent 2 hours could be lost due to single DC outage.
A key characteristic of such transfers is that they are elastic
to bandwidth allocation as long as they complete before the
deadlines. Missing deadlines will violate the application SLAs
and greatly degrades application performance.

However, state-of-the-art solutions and the current practice,
such as rate limiting, TE [1], [2], [4], and network virtual-
ization approaches [6]—[8], are all insufficient when handling
deadline-based Inter-DC transfers.

Public Inter-DC Rate Limiting Does Not Respect Deadlines:
Rate limiting provides isolation among flows, but it is far
from deadline guarantee. Even with rate limiting, the inter-
DC transfer time is highly variable, as shown in our AWS
measurements. Meeting deadlines requires fine-grained service
differentiation. However, the current practice does not differ-
entiate among different traffic classes.

Private Inter-DC TE Techniques Do Not Guarantee
Deadlines: SWAN and B4 take a TE approach to improve
the inter-DC WAN network utilization. They consider traffic

581

characteristics and priorities (e.g., interactive > elastic > back-
ground) to enhance application performance. However, such
prioritization is too coarse-grained and does not guarantee any
specific transfer deadlines. Because there exists no interface
for tenants to specify their transfer deadlines, and the provider
has no way to honor them. In our evaluation (§VIII-D) we
find that a large portion of transfers will miss their deadlines
in SWAN.

Tempus [4] is deadline-aware and promises each request
a maximal fraction of transfer before deadline without guar-
anteeing the completion, especially when demand exceeds the
network capacity. However, for many applications, partial data
transfer is useless as the applications move forward up on
the completion of last byte of the last flow. As a result, this
paper focuses on how to fully utilize the WAN bandwidth
to guarantee the completion of as many transfers as possible
before deadlines.

Applying Solutions for Intra-DC to Inter-DC Are Insufficient
to Ensure High WAN Utilization: The bandwidth guarantee
provided by virtual network abstractions [6]-[8], such as
the hose model, supports transfer deadlines by guaranteeing
minimum bandwidth. However, when applied to inter-DC
WAN, they are insufficient to fully utilize the WAN bandwidth.
The reason is that these pre-determined bandwidth reservation
models (either static [6], [7] or time-varying [8]) are less
flexible than the deadline based reservation. They provide fixed
bandwidth guarantees over time while our design focuses on
guaranteeing the total transfer volume given a deadline. Their
models place a more stringent requirement at the admission
time, while our model is more flexible because the bandwidth
allocation can change over time as long as the total volume is
delivered within the time limit. In our evaluation (§VIII-C), we
find that pre-determined bandwidth reservations under-utilize
the WAN resources, leaving many transfer requests unsatisfied.

IV. DEADLINE-BASED ABSTRACTION

The overarching goal of our work is to seek a user-provider
interface and a mechanism to fully utilize the expensive WAN
bandwidth to meet deadlines for as many transfers as possible.
Realizing this needs an abstraction satisfying two objectives:
1) Expressive specification: The abstraction must allow
tenants to easily express their deadline requirements in
an explicit fashion to ensure application-level SLAs [10].

2) Provider flexibility: The abstraction must provide flexi-
bility in provider’s resource allocation. Leveraging its
flexibility, the provider is then able to maximize the
utilization of the expensive inter-DC WAN, and at the
same time accommodate as many deadline transfers as
possible.

To this end, we present DNA, an explicit deadline-based
network abstraction, that allows the tenants to directly express
their transfer deadlines.

Transfer: A transfer represents a tenant’s data delivery
demand from a source DC to a destination DC. Note that this
captures a tenant-level aggregate demand between a pair of
DCs. Scheduling individual flows within a tenant is handled
by tenants, which is not the fcous of this paper. A transfer, T,
is specified as a tuple {src, dst, Q, ts, tdy,tds}, where src and

582

dst are the source and destination DCs, () is the data volume,
ts is the starting time, and(tdy,tds) captures the deadline,
either hard or soft. Specifically, td; represents the completion
time before which the transfer suffers no utility loss, and after
td;, the utility degrades gradually to O at time tds. Note that,
if td; = tds, it indicates a hard deadline. A similar model has
been adopted in Tempus [4] as well.

Request: A tenant may have multiple co-related
transfer demands across many DCs. For example, when run-
ning MapReduce as a single geo-distributed operation across
DCs [11], multiple shuffle transfers from several mappers to
a reducer are barrier-synchronized, and the completion of a
single transfer does not improve the job completion time.
To this end, DNA allows tenants to specify such a demand
by submitting a request R = {73, --,T,}, where T;s are
transfers with a same deadline requirement [td;,tds]. The
provider accommodates all transfers of a request in an atomic
fashion.

V. AMOEBA

In this section, we introduce Amoeba, a system that imple-

ments DNA. We set up the following goals for Amoeba.

« High WAN utilization & acceptance rate: The system
must fully utilize inter-DC WAN bandwidth to maximize
the acceptance rate of tenant requests with deadlines,
which is also the chief design goal of this paper.

o Ensure coexistence: The system must work with all
types of traffic. Interactive traffic must be delivered
without any delay, while background traffic is served in
a best-effort manner.

o Handle dynamics: The system must be able to handle
network dynamics and be robust to failures and mis-
predictions in interactive traffic. Temporal variations in
interactive traffic demand and network failures are the
major sources of dynamic events that the system must
deal with.

o Scalability & deployability: The admission control deci-
sion must be made in near real-time upon request. The
enforcement of delivery schedule must also be done in a
scalable fashion to support many transfers and to scale up
to tens of DCs. For practical deployment, the system must
not require modification to existing network devices.

A. System Overview

In general, Amoeba implements a two-level bandwidth
sharing policy. First, priority classes are enforced (i.e., inter-
active > deadline transfers > background) and bandwidth is
allocated in strict precedence across these classes. Second,
within the deadline transfer class, bandwidth is scheduled to
meet the deadlines of the transfer requests.

Figure 2 illustrates the system architecture of Amoeba,
which contains a logically centralized controller and site
brokers. The central controller is the core of Amoeba and
orchestrates all network activities.! To be fault-tolerant, the

IThe control latency introduced by the centralized control is acceptable for
large transfers, and therefore centralized resource allocation is widely adopted
for large transfers in inter-DC WAN recently [1], [4], [9], [12]. Amoeba
follows this trend.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

4] central Controller (& Tenant
“““ i e
"""" 'i" Kd-rﬁi-l-/ -eiéc- Management
Online Traffic
Scheduling Database
H
P | e—————— e p e e
\
- -
Allocation Interactive | |~~~
Enforcement Prediction
(0T

Fig. 2. System model.

controller is replicated across multiple DCs, and one of them
is elected as master using distributed consensus protocols such
as Paxos [13]. The controller maintains global information
about the network bandwidth and interactive traffic demand,
and performs the spatial-temporal resource allocation (§V-B)
for deadline transfers using residual bandwidth left over by
interactive traffic. A site broker, located in each DC, is a
local representative. It predicts and reports interactive traffic
demand for a local DC to the central controller periodically,
and coordinates the bandwidth enforcement to realize the
decision made by the controller. Note that the admission
control discretizes time into timeslot for bandwidth allocation.
Meaning, bandwidth allocation is fixed within a timeslot, but
can vary across different timeslots. This way, timeslot also
represents the maximum time that a newly arriving request
has to wait before starting to transmit. We set the timeslot
to 3-5 minutes in our implementation to achieve a reason-
able tradeoff between performance and overhead, similar to
SWAN [1].

Amoeba works as follows. When a new request arrives, the
controller quickly determines if the request can be admitted
in an online fashion (§V-B.1). The design of our spatial-
temporal resource allocation also considers handling practical
system factors, such as mispredictions (§V-B.2) and failures
(§V-B.3). For each accepted request, before the beginning
of each timeslot, the controller will inform the site brokers
of the actual bandwidth allocated to each request and the
corresponding path. The site brokers, in turn, enforce this
via host/hypervisor-level rate limiting and explicit routing path
control (§V-B.4).

B. Spatial-Temporal Allocation

1) Admission Control: Similar to bandwidth guarantee
services provided in intra-DC networks [6]-[8], the admission
control of Amoeba is performed in a first-come
first-served (FCFS) manner.” To achieve high WAN utilization
and high acceptance rate of deadline transfers, the admission
control algorithm tries best to accept each incoming request
without preempting the already admitted requests. To make
effective online admission decisions, the key to our admission
control algorithm is to balance scalability and optimality. On

2As a result, users should submit requests as soon as they are clear about
their demand, in order to maximize the possibility of getting accepted.

ZHANG et al.: GUARANTEEING DEADLINES FOR INTER-DC TRANSFERS

one hand, the algorithm can be fast if we simply assume all the
previous request schedules are fixed and perform allocation
on the new request with the residual bandwidth. However,
this is sub-optimal. As we will show in §VIII-F, Amoeba
can bring 7%-12% performance improvement over such a
solution. On the other hand, the algorithm can be optimal® if
for any incoming new request, all existing requests, together
with the new one, are rescheduled. However, although
polynomial time solvable, it is still time-consuming. As we
will show in §VIII-E, such an algorithm takes tens of seconds
per allocation, and the time cost increases dramatically as
flow arrival rate increases. Furthermore, we note that the
all-or-nothing nature of guaranteeing transfer completion in
Amoeba makes it hard to optimize as it cannot be captured
with a linear constraint. Thus, the optimization framework
developed for fractional allocation in Tempus [4] cannot be
directly adopted for Amoeba.

Our algorithm seeks a tradeoff between scalability and
optimality. We briefly summarize the high-level idea of our
algorithm here and defer the details to §VI.

1) When a request arrives, we quickly find out a schedule
with completion time ¢’ as early as possible, assuming
all previous decisions are fixed. We refer to this step as
adaptive scheduling (AS, §VI-A). AS essentially tries
to use residual network capacity to quickly accept a
request by solving a min-cost flow problem (§ VI-A). For
a request, if it can be satisfied at this step (i.e., t' < tdy),
go to step 3; otherwise, go to step 2.

2) We try to reduce the completion time ¢’ by reschedul-
ing bandwidth schedules of previously accepted
requests without violating their deadlines. Opportunistic
rescheduling (OR, §VI-B) is designed to select a small
subset of previous schedules that are most relevant to
the current request and performs a cost-effective joint
rescheduling. This increases the chance of reducing ¢’
while being computationally more efficient than consid-
ering all previous requests. After performing OR, if we
can at least accommodate it as a soft deadline request
(i.e., t' < tds), go to step 3; otherwise, go to step 4.

3) Accept the request with a guaranteed transfer time of
t* = max{td;,t'}. If the original request is a soft-
deadline request, this step transforms it to a hard-
deadline request with ¢* as the guaranteed deadline.
Given t*, the central controller calculates an initial
bandwidth schedule that meets this deadline (§VI-C).
This initial schedule is subject to changes when handling
future requests, mispredictions, and failures.

4) Reject the request. Note that a rejected request can be
submitted again later (probably with a looser deadline
requirement).

Our evaluations in §VIII show that our algorithm strikes

a good balance between scalability and optimality. Amoeba
achieves 30x speedup at the cost of sacrificing only 3% in
performance compared to a global optimal strategy.

2) Handling Mispredictions: According to our experiences
with production DCs and prior work [1], interactive traffic

3In the sense that it maximizes the possibility of accepting the request.

583

takes only a small portion of the overall Inter-DC traffic, e.g.,
5% — 15%. While the interactive traffic demand is bursty and
highly diurnal, the average volume over a 5 minute window
is relatively stable and can be largely predicted [1]. However,
misprediction is inevitable. Without proper handling, it may
degrade the quality of service. In particular, extra interactive
traffic can preempt the bandwidth allocated to deadline trans-
fers as interactive traffic has higher priority, which may cause
accepted requests to miss their deadlines.

We address this problem by setting aside different head-
rooms for different timeslots proportional to how far away
the timeslot is. This is motivated by our observation that the
degree of misprediction may be large for a timeslot far into
the future, but gradually becomes more accurate as it comes
closer. For example, for the next timeslot, the headroom can
be just 5% of the predicted interactive traffic, whereas for a
timeslot an hour later, the headroom can be set to 15% of the
predicted interactive traffic. Through this approach, we can
safely accept requests for future timeslots. As time advances,
the overprovisioned headroom of a timeslot can be released
for accepting new requests or speeding up existing requests.
To prevent resources from being wasted, we periodically
run an algorithm similar to OR at the beginning of each
timeslot and move allocation towards the current timeslot
opportunistically.

Furthermore, interactive traffic may surge inside a timeslot.
In Amoeba, the site broker is in charge of this. The basic idea
is that interactive traffic can borrow bandwidth from deadline
transfers whenever needed, and return in the future. More
specifically, the site broker maintains a record of the interactive
“debt” of each destination for each bandwidth allocation cycle
(i.e., 10 seconds). It keeps monitoring the interactive traffic
fluctuation: if the headroom cannot absorb the interactive
fluctuation to a destination, it dynamically decreases band-
width from user request with the same destination and farthest
deadline; the debts are paid back when the interactive traffic
becomes lower than the headroom. Note that such debts can
be transferred between timeslots so that even large interactive
surges can be handled.

In addition, Tenant’s demand specification can be inaccu-
rate. Amoeba simply handles this as follows. For an over-
estimated request, the over-estimated part can be reclaimed
once reported, and the tenant will be charged partially for this
part. For an under-estimated request, the additional demand
will be treated as a new request for allocation. If the new
request cannot be satisfied, the tenant will be informed and it
is up to the tenant whether the transfer should continue. If not,
the tenant only pays for the transferred amount.

3) Handling Failures: In Amoeba, link/switch failures
can be detected and communicated to the controller by the
site brokers according to the framework introduced in [1].
However, when failures happen, Amoeba may not be able
to satisfy all the requests that have been accepted. In this
case, Amoeba has to remove some accepted requests. How-
ever, obtaining an optimal solution (either minimizes through-
put loss or minimizes the number of removed requests,
while guaranteeing the deadlines of requests that are not
removed) is NP-hard (shown in Appendix). Instead, we

584

perform online rescheduling similar to our admission control.
First, we remove all the requests that pass through the failed
link, and set the residual bandwidth as the available bandwidth
after failure. Then, we treat these removed requests as new
requests (with their residual transfer volume) and perform
admission control one by one according to their arrival times.
Moreover, failures of the central controller and site broker are
handled in a similar way as in [1].

4) Allocation Enforcement: We briefly introduce how
Amoeba enforces the rate and path allocation decided by the
controller.

Rate Enforcement: In practice, any distributed rate limiting
solutions [14] can be applied to translate aggregate tenant-level
allocations into flow-level allocations for practical enforce-
ment. In our implementation, the end hosts perform per-flow
rate limiting and the site brokers ensure that the sum of
individual flow rates does not exceed the aggregate tenant-level
allocation.* In addition, we note that the allocation distribution
mechanism in BWE [15] system can be applied here for more
fine-grained flow-level bandwidth enforcement.

Routing Enforcement: Many approaches such as source
routing [16], MPLS [17], and OpenFlow [18] can enforce
explicit path control. However, source routing is usually not
supported by the data center switch hardware; while MPLS
needs a signaling protocol, i.e., Label Distribution Protocol,
to establish the path, which is typically used only for traffic
engineering in core networks instead of application-level or
flow-level path control. OpenFlow can establish fine-grained
routing paths by installing flow entries in the OpenFlow
switches via the controller, however the generic OpenFlow
TCAM rules in commodity switches are limited to a small
number, typically 1-4K [1]. To overcome this limitation,
recent solutions such as SWAN [1] dynamically change the set
of paths available in the inter-DC network at different times
through dynamic flow table configurations, which introduce
non-trivial implementation overhead and performance degra-
dation. In Amoeba, we leverage XPath [19], a simple, scalable
and readily-deployable way to implement explicit path control.
We elaborate the enforcement module and its implementation
in §VIL

C. Pricing Model

We discuss a simple pricing model to encourage tenants to
reveal their authentic transfer requirements to the provider, i.e.,
class, volume, and deadlines.

Encouraging true class declaration can be done by simply
setting a “higher price for better service” policy. Interactive
traffic is assigned the highest priority, thus deserves the highest
unit price (price per GB) p;,:. Background traffic receives
a best-effort service, and should be charged at the lowest
unit price pycx. Deadline transfer lies in-between, and its unit
price pgai(-) varies depending on both volume and deadline.
To distinguish different classes, we simply set pint > Paar(-) >
a * pine and B * paai(-) > pock,’ where a, 3 € (0,1) can be

4An alternative way is to rate limit the aggregate tenant-level allocation on
switches. However, the number of transfers that can be rate limited is bounded
by the number of policers on the switch [8];

SWe use “>” as pyqi(-) varies and we only restrict the upper/lower bound.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

flexibly adjusted according to the supply-demand relationship.

Encouraging true volume declaration is also simple. For
under-claimed requests, the extra volume beyond requested
is handled as background traffic in a best-effort manner; For
over-claimed requests, the unused bandwidth can be exploited
by background traffic, but the tenant should pay for the entire
volume claimed.

Encouraging true deadline declaration is necessary: consider
two requests transferring the same amount of data from site A
to site B with deadlines of 2 timeslots and 20 timeslots respec-
tively; although they transfer the same volume, the pressure
they exert to the network is different. Thus, the charging of the
deadline traffic should depend on both volume () and deadline
guaranteed t*. For this, we can use the expected bandwidth
B = Q/t* as the criteria for charging, i.e., pqq(-) should be
a non-decreasing function of B. Note that users may reduce
their costs by splitting their requests into smaller chunks and
use the same deadline for all chunks. However, it is risky to do
so because some chunks may be rejected. Moreover, a lower
bound on the smallest chunk size can be set in order to regulate
user requests.

Moreover, such a pricing model also helps to substanti-
ate the benefit brought by our deadline guarantee service.
In our evaluation (§VIII-F), we propose two simple pricing
functions based on the above discussion, and evaluate the
corresponding provider revenue gain over the fixed bandwidth
abstraction (§VIII-C). The results show that the 60% higher
network throughput brought by Amoeba directly translates to
around 30% higher provider revenue.

VI. ALGORITHM DETAILS

We elaborate the algorithm in §V.

A. Adaptive Scheduling (AS)

AS tries to embed a new request R into the WAN substrate
along two dimensions, time and space, without changing the
bandwidth schedules of existing requests. To do so, we keep
track of the residual bandwidth on each link, and denote the
residual bandwidth of link [at time ¢ as R'(t). To determine
the feasibility and routing paths, we solve a min-cost flow
problem on a temporally expanded flow graph.

Creating the Expanded Flow Graph: First, we construct
a flow graph G by creating a virtual node for each DC
at every timeslot, as shown in Figure 3. Each virtual node
DC, ; represents a DC n at timeslot ¢. In each timeslot, these
virtual nodes are connected to each other just as they were
in the original inter-DC topology. Each link [between two
virtual nodes of the same timeslot ¢ is assigned a capacity
of ¢(l) = R'(t).

Second, we add a pair of super nodes S; and D; for each
transfer 7; in R, and connect S; to all source DCs DC); ; with
timeslot ¢ inside T;’s possible transmission period [ts, tds] .
We then connect the destination DCs to D; in a similar way.

Finally, we add a source node S and a sink node D in the
graph, and connect all S;s and D;s to S and D respectively.
The link capacity c¢(l) of each link is set to ;. Such time

ZHANG et al.: GUARANTEEING DEADLINES FOR INTER-DC TRANSFERS

Timeslot 2 . \ NN AN 2/ N
OV wps NP

= Substrate Link
— — Virtual Link (Transfer Level)
Virtual Link (Request Level)

(O Datacenter Node
[0 Super Node (Transfer Level)
(O Super Node (Request Level)

Fig. 3. Creating temporally expanded flow graph for adaptive scheduling
over multiple timeslots.

expansion can be regarded as a variation of the technique
introduced in [20].

Figure 3 shows an example to expand a request R
over 3 timeslots, where R includes two transfers 77 =
{DCl,DC4, Ql,ts =].,tdl = Q,tdg = 3} and T2 =
{DCl,DCQ,QQ,f,S = Q,tdl = 2,td2 = 3} T1 is expanded
over timeslot 1 to 3, and 75 is expended over timeslot 2 to 3.

Finding the Shortest Possible Completion Time: Given G,
we approximate the minimal completion time by assigning dif-
ferent weights to edges in the flow graph, and then solving the
corresponding min-cost flow problem (problem formulation in
Algorithm 1). More specifically, for each edge [from .S; to
the source DCj ¢, we assign weight w(l) = 2'7'S. Through
this way, the solution to Algorithm 1 tends to pack more flows
in the earlier timeslots in order to minimize the cost. The first
constraint requires that the aggregated flow rate on each link
does not exceed the link capacity. And the third constraint
requires that for each transfer, the aggregated flow rate over
different paths and timeslots should be equal to the transfer
volume. Note that we use only k-shortest paths between each
source-destination DC pairs as input of Algorithm 1. This
reduces the number of desired paths we need to pre-install
in the switches.® In our simulation in G-scale topology, we
find that £ = 10 already results in negligible loss on both
request acceptance rate and throughput.

After AS, if the completion time ¢’ < ¢dy, then the provider
will accept the request with deadline td; directly. Otherwise,
we proceed to OR, where we try to further reduce ¢’ by
rescheduling existing accepted requests.

B. Opportunistic Rescheduling (OR)

As mentioned earlier, obtaining an optimal spatio-temporal
schedule over all existing requests is time-consuming. To
achieve a near optimal schedule with affordable computation
time, we design a two-step heuristics for OR: local stretching
and joint rescheduling.

®Moreover, AS is essentially a multicommodity flow problem, and it is
equivalent to the min-cost flow presentation (the LP formulation is the same)
with path constraint.

585

Algorithm 1 Min Cost Flow Formulation on the Expended
Flow Graph

Input: R = {13, T5,...T,,}: A tenant request with n
transfers;

P; = {p1,p2, ..-px }: k-shortest paths between the DC

pair of transfer ¢ € [1,n];

I, . 1 1if | € py; and O otherwise;

¢(l): residual link capacity for link in the expended

graph;

Output: Return the latest timeslot ¢’ in the solution of

the following problem;

min’imizezm,pm 21er W) fitpn Ipn

S.t.
Vit > Epmepifitpm p0 < c(l)
Vi, t, Pm, fitpm >0

Vi € R7 Zt meepifitpm = QL

% fitp,,: the allocation to the flow over path p,, € P; in
timeslot ¢ for transfer 75;

L]
|
+—- Local

>l —— -

g L Stretching g [

S S B D

(@]

g el ——) S@B D_J¢

= :) 5 | N
t | t

td, ts td,

Fig. 4. Local stretching implements OR.

Local Stretching is a simple greedy algorithm. As illustrated
in Figure 4, to accommodate request R, we “shift” the band-
width schedules of previous requests out of R’s time window
[ts,tds]. This is performed on every path that R passes
through. By local stretching, we set aside more residual band-
width to accommodate R. Thus, when performing AS again,
it is more likely to reduce ¢'. If ¢’ is still larger than td; after
local stretching, we proceed with joint rescheduling.

Window Selection: We define a stretching window,
(Wiest, Wright], that determines the set of flows involved in
the stretching operation. Only the flows with starting time
and deadline within this stretching window will be stretched.
As shown in Eq. 1, the window is selected to be centered
around and larger than the [ts,td2] of R. The choice of
window size 3 is a trade-off between performance and com-
putational cost, we set 4 = 2 in our simulation.

{VVleft - mal’(tcurrent; ts — 5(td2 - tS))

1
Whight = tda + B(tdy — ts) W

Bi-Directional Stretching: For all the flows in the stretching
window, forward stretching tries to stretch as much volume
from [ts, tda] to [tda, Wiyignt] as possible. We perform forward
stretching on flows one by one in a descending order of their
deadlines. And for each flow, the stretching is done by greedily
reallocating its bandwidth allocation in [ts, Wyign:] towards
later timeslots without changing its path, as we did for flow

586

C in Figure 4. Backward stretching is then done on each flow
in the ascending order of ts, and the procedure is similar to
that of forward stretching (flow A and B in Figure 4).

Joint rescheduling is a partial optimization, in which we
select some existing requests to do coordinated rescheduling
together with the new one, i.e., running AS on all these
requests collectively. Note that the time cost of AS is related to
the number of requests. Therefore, instead of considering all
existing requests, the idea is to find a subset of most relevant
requests to reschedule so that the chance of further reducing
the completion time ¢’ of the new request maximizes.

Request Selection: For each transfer X; in R, we define
a scoring metric, S(Xj,Yj), between X; and an existing
accepted transfer Y} to estimate Y}’s rescheduling effective-
ness, i.e., how much Y;’s rescheduling will help in reducing
t' of X;. S(X;,Y;) is related to the following two factors:

1) The possibility that Y;’s traffic can be shifted out of
X;’s transmission window [ts, tda]. We estimate this as
% where [ts?,td’] is the transmission range of Y},
and [t~,t"] is the overlapping time period of X; and
Y’s transmission time.

The amount of Y;’s traffic that goes through X;’s
bottleneck link. This is quantified by the amount of X;
and Y’s traffic that goes through the same link weighted

by the link’s utilization’:

2)

tt Vpm€eP(Yj)

2 2

t=t— l€EPm

(Ui(t) - ix, - Dy - Fitpo)

where I x,/ Iiy; indicates whether link / is used in
X;/Y;, and P(Y;) is the set of k-shortest paths from
srej to dstj in Y, and Uj(t) is the link utilization of [.

For each transfer X; € R, we select a set of n existing
requests that have the highest scores, denoted as H,(X;).
We then define the set of n highly relevant requests with R,
Hn(R), as UXieRHn(Xi)-

Partial Optimization: We create a new request R’
H,(R) UR. We run AS over R’ on the WAN substrate
where the residual link capacities are obtained by removing
the requests in H,(R). Then, AS tries to accommodate all
transfers in R/. If it fails, we finally reject R.

C. Bandwidth Schedule

For each accepted request with guaranteed deadline ¢*, the
controller calculates a bandwidth schedule that meets ¢* and
updates the residual bandwidth R!(¢) accordingly. Note that a
deadline t* may correspond to many feasible spatial-temporal
schedules, and different schedules may have different impacts
on the admission control of future requests.

To increase the chance of accepting future requests using
AS only (time-efficient), a heuristic is that for each new
request, AS should minimize the link utilization across all
involved timeslots. That is, we always try to allocate a request
with shorter paths. This is realized by assigning each link with

"The intuition of using link utilization as weight is that highly utilized links
are most likely to be bottlenecks of reducing the completion time of R. And
the score should take that into consideration.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

Enforcement
Daemon

— i —m

TCP/IP

User Application |

Kernel

Enforcement
Kernel Module
ter

& Flow table
modifier

| Linux Traffic Control |
n
-
v

| NIC driver |

DC2

The software stacks of
" Amoeba on end hosts

(a) {b).Testbed topology

Fig. 5. Implementation & Testbed.

a uniform link weight of 1, and then solve the corresponding
min-cost problem in Algorithm 1 with an extra constraint
t < t*. In this case, the bandwidth schedule may not always
favor earlier time slots. Therefore, in our implementation, at
the beginning of each timeslot if Amoeba detects available
bandwidth in the current slot, it runs an OR alike heuristic to
pull more traffic from the future timeslots back to the current
one, in order to fully utilize the bandwidth.

VII. IMPLEMENTATION

Our prototype consists of the controller, site brokers and
enforcement modules. We implement our algorithm in §VI for
the controller and site brokers. For routing enforcement we
use XPath [19] which enables explicit routing path control,
and for bandwidth enforcement we leverage the Linux Traffic
Control (TC).

Amoeba’s enforcement module consists of a kernel module
and an enforcement daemon, as shown in Figure 5. The
enforcement daemon communicates with the kernel module
via iotcl. The enforcement daemon interacts with the site
brokers to obtain VM-level rate limits and the corresponding
path IDs. It is responsible for managing the flow table, such as
inserting, updating or deleting flow marking rules. The kernel
module is located between TCP/IP stack and the Linux TC
module. The kernel module intercepts all outgoing packets,
it modifies the nfmark field of sk_buff (netfilter mark, a
field which can be used for packet marking) after looking up
the flow table, which will be used as the identifier for rate
limiting in TC. Meanwhile, it also modifies the destination
IP of sk_buff into the corresponding path ID in order to
enforce the routing path. Then these packets are directed to
TC for rate limiting. In virtualized environments, we envision
that the kernel module runs in the hypervisor and DomO to
control all traffic going through physical NICs.

To perform distributed per-flow rate limiting on end hosts,
we leverage the Hierarchical Token Bucket (HTB) in TC.
We use the two-level HTB: the leaf nodes enforce per-flow
rates and the root node classifies outgoing packets to their
corresponding leaf nodes based on nfmark field which has
been modified by Amoeba kernel module.

For routing enforcement, we perform explicit path control
using Xpath as mentioned in §V-B.4. First, the XPath manager

ZHANG et al.: GUARANTEEING DEADLINES FOR INTER-DC TRANSFERS

(which is integrated into the Amoeba controller) explicitly
identifies each desired end-to-end path with a path ID (in the
format of a 32-bit IPv4 address), and compresses these IDs
into IP LPM (Longest Prefix Match) tables. These routing
tables are then pre-installed into the corresponding inter-DC
switches, thus no further dynamic reconfiguration is needed.
Second, each site broker maintains a path-to-ID mapping table,
and translates the routing decision (made by the controller)
into the corresponding path IDs for each request. Finally, given
the path IDs, we leverage NAT at each sender end-host to
translate the raw destination IP into the desired path ID for
each packet, thus explicitly specifies the routing path.®

To make sure that the overhead of Amoeba’s enforcement
module is negligible, we measure the extra CPU usage it
introduces. We generate more than 900Mbps of traffic with
more than 100 flows on a Dell PowerEdge R320 server with
8GB of memory and a quad-core Intel E5-1410 2.8GHz CPU.
The extra CPU overhead introduced is around 3% compared
with the case that Amoeba’s enforcement module is not used.
The throughput remains the same in both cases.

VIII. EVALUATION

In this section, we answer five specific questions through
extensive evaluations:

o Does Amoeba provide deadline guarantees for inter-
DC transfers in practice? In §VIII-B, we show that
Amoeba guarantees deadlines for all accepted requests,
and all flows complete within the scheduled time given by
the controller. We also show that Amoeba ensures this
while achieving no worse (much better in some cases)
network utilization than the state-of-the-art solutions.

o« How does Amoeba compare with existing solutions
that provide a fixed minimum bandwidth guarantee?
In §VII-C, we show that Amoeba achieves up to
60% higher utilization while satisfying up to 15% more
requests with deadlines.

o How does Amoeba compare with existing
SDN-based inter-DC TE solutions? In §VIII-D,
we show that Amoeba accommodates 60% more
requests with deadlines while achieving similar levels of
utilization.

o How effective is Amoeba and how scalable is it? In
SVIII-E, we show that our heuristics make reasonable
tradeoffs. They achieve 30x speedup at the cost of
sacrificing only 3% of network utilization compared to
a strategy which tries to find an optimal schedule.

« How do Amoeba’s components contribute to perfor-
mance and computational cost? In §VIII-F, we show
the performance breakdown of each component, present
some results on misprediction and failure handling, and
analyze the effect of supporting soft deadlines. We also
proposed two simple pricing functions and evaluated the
corresponding revenue gain brought by Amoeba.

8 And we translate the path ID back to the raw destination IP at each receiver
to avoid confusing the network stack and application.

587

A. Evaluation Methodology

We evaluate Amoeba with both testbed experiments and
simulations. On the testbed, we show the overall performance
of Amoeba and also demonstrate that the obtained schedules
from our algorithm can be effectively enforced. Through sim-
ulations, we unravel the details of Amoeba across different
settings, topologies, and workloads.

Testbed Setup: We build a small testbed with 30 servers to
emulate an inter-DC WAN with 6 DCs as in Figure 5. Each
DC has 5 physical servers and a Pronto 3295 48-port Gigabit
Ethernet switch. The switch has installed PicOS 2.0.4 system
which supports both Layer2/Layer3 and OpenFlow. Each inter-
DC link is emulated using one physical 1G link. The central
controller locates in DC 1. We add delays to emulate the
WAN environment, and the delays are generated based on
the speed of light and geometric distances between randomly
selected DC sites in the G-Scale topology [2]. The OS of each
server is Debian 6.0 64-bit version with Linux 2.6.32 kernel.
Each server has a qual-core Intel E5-1410 2.8GHz CPU,
8G memory, 500GB hard disk with 1G Ethernet NIC. The
CPU, memory or hard disk is not a bottleneck in our testbed
evaluation. We use iperf to generate TCP flows.

Simulation Setup: We simulate two production inter-DC
WANSs: (i) G-Scale, Google’s inter-DC WAN with 12 DCs
and 19 inter-DC links [2], and (ii) IDN, with 40 DCs, each
connected to 2-16 other DCs [1]. We assume that each link
has a uniform capacity of 160 Gbps. Interactive traffic on
each link is randomly generated between 5% and 15% of the
link capacity for each timeslot, which is also assumed to be
the predicted interactive workload. Based on such predicted
workload we leave extra headroom and keep updating the
headroom as we discussed in §V-B.2. Each run simulates 150
5-minute timeslots (about 12 hours). We report the average
of 5 runs.

Metrics: We measure three performance metrics: network
utilization (i.e., the average link utilization of interactive traffic
and all accepted requests), request acceptance/rejection rate,
and network throughput.

Workload: The inter-DC deadline traffic demand is gener-
ated with the following parameters:

o Request arrival time is modeled as a Poisson process with
arrival rate A per timeslot.

o Deadlines: The maximum transfer time without utility
loss, i.e., td; — ts, is modeled under exponential distrib-
ution with a mean of one hour, and the deadline td; can
be calculated accordingly. We consider soft deadlines in
§VIII-F.

o Transfer volume: As transfer volume and deadline are
related, we set up its value in a way that W
(i.e., average transfer throughput) follows an exponential
distribution with a mean of 20 Gbps.

o Number of transfers per request: each request contains
1-6 transfers.

B. Testbed Experiments

We perform experiments on our testbed for a duration
of 50 3-minute timeslots (2.5 hours). At any given time,

588

—Amoeba
- - -Fixed
- - SWAN

o
®

o
»

CDF (flows)
o
b

——Amoeba
- - -Fixed
-- SWAN

o
N

1.2

0.9 1 1.1 95 =T > 0 5
Measured/Scheduled Throughput Actual Completion Time - Scheduled Completion Time (s)

(a)Throughput deviation (b)Completion time deviation

Fig. 6. Deviation between schedules and testbed results. (a) Throughput
deviation. (b) Completion time deviation.

100%

n

o

~=—SWAN Effective

1
—o—Fixed
—Amoeba

2 280% 2 20} |- SWAN Total
31 g @ —Amoeba
= 4 60%) =1
3 W € 2
< i) 5 10]
=) 2.40% =
=3 O 3
g 3 £ 5
= < 20% I

= 0

% 10 20 30 40 50 0 10 20 30 40 50
Timeslot Fixed Amoeba Timeslot
(a) (b)

Fig. 7. Experiment results. (a) Amoeba vs. Fixed. (b) Amoeba vs. SWAN.

the actual traffic per DC-pair is composed of 20 to 200 TCP
flows. Our experiment results demonstrate: 1) Amoeba guar-
antees deadlines by generating effective bandwidth schedules
and accurately enforcing the schedules at each timeslot; and
2) Amoeba delivers higher utilization/throughput compared
to others, including solutions that provide fixed minimum
bandwidth (Fixed) and SDN-based TE (SWAN).

To demonstrate that Amoeba performs effective bandwidth
schedules and accurate real-time enforcement, we show the
difference between the scheduled bandwidth allocation and the
throughput actually measured in the experiment in Figure 6 (a).
We observe that for more than 95% of requests, the difference
is less than 5%. In addition, Figure 6 shows that for the
majority of flows, the completion times on the testbed matches
their schedules (note one flow lasts at least for one timeslot).
Such result indicates that a sub-second level inter-DC delay
has a negligible impact on the bandwidth allocation and
deadline guarantee of Amoeba, as the schedule is at the
granularity of 3-minute timeslot. Furthermore, we note that
the throughput measured is slightly higher (and the completion
time is slightly smaller) than scheduled. One possible reason is
that the completion time measured by iperf is the time to copy
data from user space to kernel space at sender side, which is
smaller than that from user space of sender side to user space
of receiver side (i.e., the actual completion time), especially
for short flows.

We further compare Amoeba with two baseline algo-
rithms (Fixed and SWAN) in terms of throughput/utilization
in Figure 7. Figure 7 (a) shows that Amoeba achieves
around 40-50% higher throughput than Fixed. This is mainly
because Amoeba has the flexible DNA model. The higher
utilization translates to higher acceptance rate. As shown in
the figure, Amoeba has an acceptance rate of 89%, whereas
the acceptance rate for Fixed is 72%. Figure 7 (b) shows
the results for SWAN versus Amoeba. SWAN achieves a

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

slightly better throughput/utilization than Amoeba. However,
SWAN is deadline-agnostic and many flows miss their dead-
lines despite of the higher total throughput. In terms of the
effective throughput (i.e., the throughput of flows that meet
their deadlines), SWAN is less than half of Amoeba.

C. Amoeba vs. Fixed Minimum BW Guarantee

We compare Amoeba with Fixed using large-scale simula-
tions. We generate requests with randomly selected sources
and destinations in both IDN and G-scale topologies. The
request arrival rate for IDN is higher because IDN is larger
than G-Scale.” The minimum bandwidth guarantee in Fixed is
set to satisfy the deadlines, i.e., By, = rr

Figure 8 (a) and Figure 9 (a) show the rejection rates for
IDN and G-scale respectively. It is obvious that Amoeba
show much better performance than Fixed. In both cases,
Amoeba accepts around 15% more tenant requests than Fixed
consistently. This is because Amoeba resource allocation
algorithm fully takes advantage of the malleability provided by
the flexible DNA model. In contrast, in Fixed the bandwidth
reservation is pre-determined and cannot be changed during
runtime, and such inflexibility leads to higher rejection rate.

Figure 8 (b)/(c) and Figure 9(b)/(c) show the network
utilization and throughput. Due to the same reason as above,
Amoeba outperforms Fixed in both topologies. In many cases,
Amoeba achieves 40%-60% higher network utilization than
Fixed. In terms of throughput, Amoeba also outperforms
Fixed by 50%-60% in most cases.

D. Amoeba vs. Current Inter-DC TE

We compare Amoeba with deadline-oblivious TE solutions,
such as SWAN [1] and Netstitcher [9], in G-scale topology.
We adopt SWAN’s allocation algorithm per timeslot with an
objective of maximizing the throughput in the current slot.
Netstitcher models the data delivery for each request as a
minimum transfer time (MTT) problem [9]. We approximate
its allocation algorithm for each incoming request. We define
request success rate as the percentage of requests that meet
deadlines. As Amoeba offers deadline guarantees, the request
success rate of Amoeba equals to its request acceptance rate.

Note that we omit the comparison between Amoeba and
Tempus [4]. The reason is that Tempus focuses on fairness and
maximizes the minimal fraction among all transfers delivered
until deadlines, but does not guarantee the completion of
any transfer before deadline. When demands exceed network
capacity, Tempus always tries to fairly share the limited
bandwidth among all requests, leading to a very low or even 0
request success rate.

Figure 10 (a) shows the request success rates for SWAN,
Netstitcher, and Amoeba respectively. As the arrival rate
increases, the request success rate decreases for all three
solutions. However, SWAN and Netstitcher experience a more
dramatic drop than Amoeba. This is because SWAN greedily

9We set the arrival rate to be at most 8/50 in G-scale/IDN because the
network is already saturated under such rate and higher arrival rate will not
cause obvious changes in network utilization and throughput.

ZHANG et al.: GUARANTEEING DEADLINES FOR INTER-DC TRANSFERS

589

40 100 25 T T T L
& —=— Amoeba %
£ 30l |~eFixed € & 220
& % § £
c = ~
£ 3 5
qo,‘ 20r % 60 2 15 b
2 2 2
o S °
2 10t % 40} —a— Amoeba £ 104 —eo—Fixed
:"{ z —e—Fixed —=—Amoeba
& 20 ‘ ‘ ‘ ‘ : : 5
20 40 50 15 20 25 30 35 40 45 50 20 .30 4_0 50
Request Arrival Rate (per timeslot) Request Arrival Rate (per timeslot) Request Arrival Rate (per timeslot)
(a) (b) ©)
Fig. 8. Amoeba vs. Fixed minimum bandwidth guarantee in IDN topology. (a) Request rejection rate. (b) Network utilization. (c) Throughput
50 .
Tl 3 ——Fixed
g 5 80r §_3 —=—Amoeba 3
S 30f T 70r E
3 = E
9 560 32
@ 20 x =) '
7 g 50 3
%10’ —a— Amoeba g 408 —e—Fixed ﬁ 19
& —e—Fixed 301 —=—Amoeba |
o i
2 4 6 1 2 4 7 8 0> 4 6 8
Request Arrival Rate (per timeslot) Request Arrival Rate (per timeslot) Request Arrival Rate (per time slot)
(a) (b) ©)
Fig. 9. Amoeba vs. Fixed minimum bandwidth guarantee in G-Scale topology. (a) Request rejection rate. (b) Network utilization. (c) Throughput.

101

100 T

. 4
X
:a; 80 X 80 —w— SWAN Effective — X
& n < —— SWAN Total a3 T
2 60 —u— SWAN S 60 =~ Netsticher Effective = —u— SWAN Effective
] ~7- Netstichter N A Netsticher Total 5, e SWAN Total
(Ig) 40 =& Amoeba =) 4 =&~ Amoeba _g) =%~ Netstitcher Effective
@ = o~——7 3 —A— Netsticher Total
[] = E =&- Amoeba
3 20 4 3 20 =R v
3 z
[v4
0 L 0 L L L 0
2 4 6 2 4 6 8 2 4 6 8
Request Arrival Rate (per timeslot) Request Arrival Rate (per timeslot) Request Arrival Rate (per timeslot)

(a)

(b) (c)

Fig. 10. Amoeba vs. deadline-oblivious TE in G-Scale topology. (a) Request success rate. (b) Network utilization. (c) Throughput.

allocates requests per timeslot without considering the dead-
lines, while Netstitcher only tries to minimize the transfer time
regardless of the deadlines. As a result, as the arrival rate
increases, more requests will miss their deadlines. We also
find that the request success rate of Netstitcher is higher than
that of SWAN. This is because SWAN splits bandwidth among
multiple transfers and it is possible that very few of them can
meet their deadlines when the number of requests is large.
On the other hand, Netstitcher serves requests in a first-come
first-served fashion, and thus the first few requests can always
meet their deadlines.

Figure 10 (b) and Figure 10 (c) show the network utilization
and throughput. In the figures, toral network utilization refers
to the network utilization of all (including partially allocated)
requests, and effective network utilization only refers to the
requests that meet their deadlines. Total and effective through-
put are defined in a similar way. From the figures, we observe
that the deadline-agnostic solutions achieve high total network

utilization and throughput, but very low effective network
utilization and throughput. This result is expected because they
do not respect deadlines. In contrast, Amoeba maintains much
better effective network utilization, as it has a much higher
request success rate by guaranteeing deadlines.

E. Effectiveness and Scalability

Effectiveness: To demonstrate the effectiveness of
Amoeba, we compare it with a strawman global optimization
algorithm in G-Scale. Whenever a request comes, the global
optimization algorithm reallocates all previous requests using
a similar formulation as AS. Figure 11 (a) shows the network
utilization of Amoeba and the global optimization algorithm
(we observed similar results in terms of request acceptance
rate and throughput as well). We find that Amoeba performs
almost the same as the global optimization algorithm under
low arrival rate, and is slightly worse than it (by around 3%)

590
100 © 15 . .
f 9 g | --Global Reallocation
& = |[=—=Amoeba
5 80 §10
E 70 8
5 2
X 60 - < 5
S —e—Global Reallocation 23
2 50 ©
g —=Amoeba 5
>
40 2 4 6 8 < 2 4 6 8
Request Arrival Rate (per timeslot) Request Arrival Rate (per timeslot)
(@) (b)
Fig. 11. Amoeba vs. strawman global optimization. (a) Network utilization.

(b) Average allocation time.

! 10
10
—-Gscale|
o ®
210 r
) €400
2 |1 £10
£ o - 'E
s o o
£ 1 5
[$] o
S ., I, -
<10 10
-3
10 0 2 4 6 8 10 20 30 40 50
Reqeust Arrival Rate (per timeslot) Reqeust Arrival Rate (per timeslot)

(a) (b)

Fig. 12. The min/mean/max Amoeba allocation time. (a) G-Scale. (b) IDN.

as the arrival rate increases. The reason behind this is as
follows. First, when the arrival rate is low, both algorithms are
able to accept most of the requests, thus achieving almost the
same performance. Second, as the arrival rate increases, there
are more requests to handle. Since Amoeba only reallocates
a subset of relevant requests when handling the new ones
(§VI-B), it becomes less effective than the optimal solution
that performs a global reallocation. As a consequence, some
requests accepted by the global reallocation may be rejected
by Amoeba.

In Figure 11 (b) we can see that Amoeba achieves
30x speedup in terms of average allocation time compared to
the global optimization algorithm. Note that the allocation time
of the global optimization algorithm in Figure 11 (b), i.e., tens
of seconds, might be acceptable for some transfer requests,
however Amoeba can achieve comparable performance in a
much shorter time. And it is always desirable to have shorter
time in admission control for timely decision on user requests.
Furthermore, as the global optimization algorithm requires
reallocation of all previous allocated requests, the time cost
can increase dramatically as the arrival rate increases, which
eventually results in unacceptable allocation time under higher
arrival rate. In this regard, the time cost of Amoeba increases
much slowly as shown in Figure 11 (b).

Scalability: We quantify Amoeba’s scalability by measur-
ing the allocation time per request in both G-Scale and IDN.
The simulation is performed on a server with 384G memory
and 2 quad-core 2.8GHz Xeon CPUs.

As shown in Figure 12, the average allocation time is less
than 0.5 second in G-Scale and less than 1.5 seconds in IDN,
and the maximal allocation time is only about 6 seconds.
Another observation is that the allocation time increases as
the arrival rate increases. This is because most requests can

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

be easily and quickly allocated using only AS under low
arrival rate. However higher arrival rate brings higher network
utilization and higher request rejection rate. As a result, the
average allocation time increases since OR is more frequently
invoked.

F. Component-Wise Benchmark

Performance Breakdown: We use simulations to show the
benefits of AS and OR individually. Figure 13 shows the gain
of AS and Amoeba (AS+OR), and we use Fixed as the base-
line. From the figure, we can see that AS contributes around
20%-40% performance gain over Fixed under most arrival
rates, and OR can bring additional 7%-12% performance gain.

We further check the benefits of two operations in OR, i.e.,
local stretching and joint rescheduling. Figure 14 shows the
results. Local stretching brings around 2%-4% utilization gain
and 2%-3% improvement in acceptance rate (not shown in
the figure), at the cost of increasing allocation time from 0.02
to 0.1 second on average. Joint rescheduling brings 4%-8%
utilization gain at the cost of increasing allocation time from
0.1 to 0.4 second on average.

Mispredictions and Failures: To show the benefit brought
by Amoeba’s evolving headroom (EH) when dealing with
mispredictions, we simulate a variant of Amoeba with a
fixed headroom (FH). Figure 15 (a) shows that, with EH,
Amoeba can set aside more bandwidth for deadline transfers,
and thus results in 2% higher throughput. Note that this is not
a small number considering that the total interactive traffic
only accounts for 5%-15% of the link capacity.

To test Amoeba under link failure, we use G-Scale and
randomly fail an inter-DC link. Since an inter-DC link can
contain multiple physical fibers [1], we consider two cases:
100% link capacity loss and 50% link capacity loss. We run
the failure handling procedure described in §V-B.2 and cal-
culate the survival rate, which is the portion of successfully
reallocated requests over all affected requests. Figure 15 (b)
shows the result. We observe that almost all the affected
requests can be successfully reallocated under low arrival rate.
Moreover, Amoeba still achieves over 80% and 90% survival
rate respectively under high arrival rate. Figure 15 (b) also
shows the time cost of failure handling, which grows as the
arrival rate increases. We argue that a time cost of 10s of
seconds is acceptable as inter-DC link failure seldom happens
and usually takes minutes to days to repair [21].

Effect of Soft Deadlines: So far we assume that all requests
have hard deadlines. We now extend hard deadlines to soft
deadlines, and we use G-Scale in our simulation. In Figure 16,
the red curve shows the performance when all requests are
assigned with hard deadlines, and the blue curve shows
the performance with soft deadlines (20% extension based
on the hard deadlines). We observe that under low request
arrival rates, soft deadlines bring better network utilization
and throughput. This is because a rejected request with a hard
deadline still has a chance to be accepted with a looser soft
deadline. However, under high arrival rates, soft deadlines do
not always perform better than hard deadlines in terms of
throughput as the link capacity are eventually exhausted in
both cases.

ZHANG et al.: GUARANTEEING DEADLINES FOR INTER-DC TRANSFERS

®
o

HAs

lAmoeba

[}
o

N
o

Utilization Gain (%)
iy
o

OO

2 4 6 8
Reqeust Arrival Rate (per timeslot)

(a)

Fig. 13.
(d) Throughput gain (IDN).

IN

® ©
S o

~+-AS
AS + Stretching
-=-Amoeba

=3
=)

Network Utilization (%
3 3

IN

2 4 6 8
Reqeust Arrival Rate (per timeslot)

(a)

Fig. 14.

591

60 80 _60
<GS g ||Mas S Was
T | |[IMAmoeba < 60/ IllAmoebal < ||/IMAmoeba
‘© 40 [T 40
o o 4}

c 540 5
2 5 £
® 20 =) © 20
S 320 3
> £ £
O0 qO

0 20 30 40 50
Reqeust Arrival Rate (per timeslot)

(b)

2 4 6 8
Reqeust Arrival Rate (per timeslot)

(c)

20 30 40 50
Reqeust Arrival Rate (per timeslot)

(d)

o
o

-+AS
AS + Stretching
-=Amoeba

N
~

o
w

o
1)

o

Average Allocation Time (s)

o,

2 4 6
Reqeust Arrival Rate (per timeslot)

(b)

The incremental benefit of local stretching and joint rescheduling.

(a) Network utilization. (b) Average allocation time.

w

g
[$)}

N
o

Throughput (Tbps)
N

—+-Amoeba with FH
—=—Amoeba with EH

2 4 6 8
Request Arrival Rate (per timeslot)
(a)

Fig. 15. Mispredictions and failures.
link failure.

1

10i 10
3290 B
% -+100% capacity loss 3
0:80 —-=-50% capacity loss P Gg
__||~®-time cost - o
270 i 40
@ 60) P 2

JU" tag
S0 4 6 &
Request Arrival Rate (per timeslot)

(b)

(a) Benefit of EH. (b) Amoeba under

~ 90
9
T80
8
E 70
= 60
<
S 50
E
24
30 —=— Soft
1 3 4 5 6 8
Request Arrival Rate (per timeslot)
(a)
Fig. 16. Soft-deadline vs.

(b) Throughput.

Provider Revenue:

hard deadline.

—e—Hard
ol | —=—Soft

Throughput (Tbps)
P

0.5!

2 4 6
Request Arrival Rate (per time slot)

(b)

(a) Network utilization.

We propose two simple pricing func-

tions and evaluate the revenue gain of Amoeba over the fixed
bandwidth solution under the G-Scale topology.
o F(ixed)-pricing: We fix the unit price pyq; for all deadline
traffic, and set pgq; = 0.5 * P and pper = 0.5 * pyq;.

« P(ropotional)-pricing: We

set pyck = 0.1 * ping and paq

lies in between. More specifically, we set pgai = Poek +

Dbek). This way, pgqr grows

proportional to the expected bandwidth B. Here B, is

The benefit of the two components of Amoeba. (a) Utilization gain (G-Scale). (b) Utilization gain (IDN). (c) Throughput gain (G-Scale).

§30 lF-pricing ;\330 Wl P-pricing
£ £

© ©

320 A 20

o)

=} S

g10 g 10

> >

[[}

o oY

o

1.2 3 4 5 6 7 8
Request Arrival Rate (per timeslot)

(a)

1.2 3 5 6 7 8
Request Arrival Rate (per timeslot)

(b)

Fig. 17. The revenue gain of Amoeba over Fixed. (a) F-pricing function.
(b) P-pricing function.

a constant and we set it to the 5th percentile highest B
among all requests.
The design simply follows some principles discussed in §V-C,
and we note that a more sophisticated modeling can be an
interesting future work.

To calculate the provider revenue, we assume that the
bandwidth left-over by deadline traffic is fully saturated by
background traffic. Also, note that neither background nor
interactive traffic is expressed as requests. In order to simulate
the throughput of background and interactive traffic based
on the corresponding network utilization, we randomly select
source and destination for background and interactive traffic
with an average hop count of two. Figure 17 (a) and 17 (b)
show the revenue gain of Amoeba over Fixed with both
pricing functions. We see that the revenue gain follows a
similar trend as the throughput gain for deadline traffic shown
in Figure 13 (c). In addition, we observe that the up to
60% higher network throughput directly translates to up to
25% and 32% higher provider revenue respectively.

G. Parameter Sensitivity Analysis

Impact of Larger Timeslots: Figure 18 (a) shows the request
rejection rate of Amoeba with a time slot of 10 minutes
(2x) and 25 minutes (5x) respectively. We see that larger
timeslots brings up to 15% points and 37% points increase on
request rejection rate. It is intuitive that larger timeslot results
in less fine-grained and less flexible bandwidth allocation, thus
in general reduces the probability of being accepted for any
incoming request. Moreover, as we can see in Figure 18 (b),
lower acceptance rate directly results in a lower network
utilization under low arrival rate for both 10-minute and
25-minute cases. However, we also observe that the impact

592

[o2]
o
o
o

-&5-minute

te (%)

o
o

= ||~ 10-minute §80
© 25-minute S
=40 =
o - ©
_%30 560
%20 £ -=-5-minute
3 24 -e-10-minute,
=} [7}
310 z 25-minute
© 20i
2 4 6 2 4 6
Request Arrival Rate (per timeslot) Request Arrival Rate (per timeslot)
(a) (b)
Fig. 18. Impact of larger timeslots. (a) Request rejection rate. (b) Network
utilization.
—~40 100
* —1X - = = 1X
I} D =
3 30 —e—1.5X C80 -e-1.5X
14 2X =] 2X
S Te0
820 3
< x 408 :
% g
173 10 =
(]
3 2 20¢
Q
i3 O‘
2 4 6 8 2 4 6
Request Arrival Rate (per timeslot) Request Arrival Rate (per timeslot)
(a) (b)
Fig. 19. Impact of tighter deadlines. (a) Request rejection rate. (b) Network
utilization.

of larger timeslot is less obvious under high arrival rate as the
network can be eventually exhausted in all cases.

Impact of Tighter Deadlines: In the following simulation we
keep the transfer volume unchanged and tighten the required
transfer time (i.e., td; — ts) by 1.5x and 2Xx respectively.
As we can see in Figure 19 (a), a tighter deadline makes it
harder for a request to be accepted, thus increasing the request
rejection rate by up to 9% and 13% points compared to the
default setting. Moreover, in Figure 19 (b) we observe up to
37% points and 50% points utilization loss in the 1.5x and
2x cases respectively. One possible reason is that many
requests with large volume get rejected with a tighter deadline.
More interestingly, note that the rejection to a big request may
lead to the acceptance to one or more small requests which
arrive afterwards. This may explain why rejection rate is not
heavily affected under high arrival rate.

IX. DISCUSSION

We further discuss some extensions to the current Amoeba
design.

Utility Function: Different tenants may desire different
utility functions describing their utility decrease from td;
to tds, and some tenants may be clear about their utility
functions, while others may not. To this end, an optional field
U(t) can be added to the DNA abstraction for tenants to
describe their utility functions, and Amoeba can be extended
to account for arbitrary utility functions accordingly.

On the one hand, for tenants who are not so clear about
their utility functions (optional field left blank), the admission
procedure shown in §V-B.1 can be directly applied, which
does not rely on any utility function information. On the other
hand, for tenants with some arbitrary utility function U(¢),

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

we extend Amoeba to optimize for the tenant’s benefit, i.e.,
the utility minus the payment. More specifically, note that the
payment (§V-C) is also a function of the guaranteed transfer
time, and thus can be denoted as P(t). Then instead of trying
to finish the request as soon as possible, Amoeba returns
the guaranteed transfer time ¢* which maximizes the tenant’s
benefit, i.e., t* = argmaz,cpy 14, (U(t) — P(1)).

Amoeba Speedup: While Algorithm 1 is an LP and can
be solved by using typical LP solvers, the constrains can be
normalized into the standard form of mixed packing-covering
(MPC) problem [22]. This observation leads to a possible
speedup of AS. More specifically, we can calculate the shortest
possible completion time (i.e., the output of AS) by performing
a binary search to find the minimum ¢ which satisfies all the
constrains in Algorithm 1. Note that checking the feasibility of
a given t is a standard MPC problem, thus fast approximation
algorithms such as those introduced in [4] and [22] can be
applied to speed up the calculation.

In addition, Amoeba consists of several components which
support incremental deployment as we show in Figure 14.
As a result, we can make a tradeoff between allocation per-
formance and scalability: in large inter-DC networks or under
high request arrival rates, we can disable parts of Amoeba,
sacrificing some performance to achieve acceptable allocation
time.

X. RELATED WORK

There are many related works on datacenter traffic
optimization or deadline-aware flow scheduling. However
none of them can directly solve our problems in Amoeba.

TE for Inter-DC WAN networks has attracted great interest
recently. B4 [2] presents Google’s inter-DC WAN solution
based on the popular software-defined networking technol-
ogy; its centralized TE drives links to near full utilization.
Similarly, SWAN [1] also boosts the utilization of inter-DC
WAN by scheduling the service traffic in a centralized manner;
it further achieves congestion-free and disruption-free updates.
However, they both are deadline-agnostic.

More recently, Tempus [4] has been proposed to maximize
the fraction of transfer delivered before deadline. It achieves
fairness among all the requests, but does not guarantee the
completion of any of them. Relative to Tempus, Amoeba
maximizes the number of transfers completed before their
deadlines, which is more suitable for applications with hard
deadlines. Moreover, the abstraction of Tempus deals with
each transfer individually, whereas Amoeba takes the cor-
relation among multiple transfers into consideration.

NetStitcher [9] focuses on using a store-and-forward
approach to schedule large scale data transfers between DCs,
but without considering any transfer deadlines. In contrast,
Amoeba moves one step further by adding a deadline-aware
transfer interface into the system so that providers can develop
algorithms to better utilize expensive WAN bandwidth to
guarantee transfer deadlines.

In the context of Intra-DC networks, there are several band-
width guaranteed abstractions [6]-[8], [23]-[26]. For example,
SecondNet [6] enforces bandwidth reservation between any

ZHANG et al.: GUARANTEEING DEADLINES FOR INTER-DC TRANSFERS

pair of VMs. Oktopus [7] proposes two virtual cluster (VC)
models, one non-oversubscribed and one oversubscribed of
bandwidth. Gatekeeper [23] and EyeQ [24] can enforce hose
model for congestion-free networks. TIVC [8] tries to catch the
time-varying nature of the networking requirement by defining
time-interleaved virtual clusters. ElasticSwitch [25] and Trin-
ity [26] achieve bandwidth guarantee and work conservation
simultaneously. Our DNA abstraction allows requests to be
expressed in terms of the volume of data to be delivered and
the deadlines by which they must be delivered. This is more
appropriate for deadline-driven inter-DC bulk transfers.

There are new protocols designed to meet flow deadlines or
minimize flow completion times in intra-DC, e.g., [27]-[32].
They are handling flow deadlines at the millisecond level, and
most rely on the short round-trip-time in intra-DC environ-
ment for effective congestion or rate control. The problem of
scheduling large transfers in inter-DC WAN is fundamentally
different, as it operates at a much longer time scale (with a
deadline of minutes or hours) and schedules requests which
are aggregations of many flows [4].

In the context of Grid networks, some works such as [33]
and [34] have studied the problem of deadline-aware data
transfer. However, the discrepancy between the Grid networks
and the inter-DC WANs makes it hard to directly apply their
solutions to our problems in Amoeba. First, they do not
consider practical issues in inter-DC WANSs such as traffic pri-
orities, mispredictions, traffic dynamics and failures. Second,
the modelings and abstractions in [33] and [34] cannot capture
the demands of inter-DC applications, e.g., soft deadlines, and
barrier-synchronized deadline transfers in a request. Moreover,
neither of these works achieves a good balance between
scalability and optimality. For example, Chen’s scheduling
algorithm [33] and the SR module in [34] are ineffective as
they assume the previous allocations to be fixed. On the other
hand, the RR module proposed in [34] is too time-consuming
for real-time allocations because it blindly applies a global
optimization.

Deadline-aware scheduling has also been widely considered
in real-time systems [35]. However, most deadline-aware real-
time system algorithms (e.g., earliest deadline first) are distrib-
uted and suboptimal compared to the centralized scheduling.
We design Amoeba in a centralized manner to achieve high
network utilization. Another related field is background traf-
fic scheduling in distributed applications [36], however they
usually do not take deadlines into account.

XI. CONCLUSION

A large portion of Inter-DC transfers have deadlines,
however, currently no mechanism is in place to ensure such
deadlines. This paper introduces a deadline-based network
abstraction, DNA, as an interface that allows tenants to
explicitly express an inter-DC transfer request in terms of the
data volume and the deadline by which it must be delivered.
Our system, Amoeba, performs on-line admission control
and enforcement to implement DNA in a scalable man-
ner. Our evaluation shows that Amoeba effectively accom-
modates more transfer requests with deadline guarantees,

593

while achieving around 60% higher network throughput than
state-of-the-art bandwidth guarantee solutions.

APPENDIX

NP-Hardness of the Failure Handling Problem: We reduce
the all-or-nothing multi-commodity flow (AN-MCF) problem
(which is NP-hard [38]) to the failure handling problem.

Proof Sketch: We first present the formulation for both the
failure handling and the AN-MCF problem.

Failure Handling Problem: Given the DCN topology with
residual bandwidth under failure, and the set of already
accepted/allocated requests R = { Ry, Rz, ...R, }. We need to
find out R’ — a subset of R, such that all ?; € R’ can finish
their remaining transfer volume within their deadlines. Denote
w; as the weight for request R;, then the goal is to maximize
> R, cr’ Wi, the weighted sum of the remaining requests.

AN-MCF: Given a capacitated undirected graph
G = (V,E,u) and a set of k pairs sit1, Sata, ..
Each pair has a unit demand. The objective is to find a largest
set S of pairs, such that for every s;{; € S we can send a
flow of one unit between s; and ¢;.

We now show that the AN-MCF problem can be reduced to
the failure handling problem in general graphs in polynomial
time: Given an instance of the AN-MCF problem, we can
construct a DCN topology equivalent to G, and for each pair
s;ti, we create a corresponding request R; with one transfer
T = {src = s;,dst = t;,Q = 1,ts = tdy = tdy = 1}.
Moreover, we set the weight of all request to 1. In such
a way, an S is a solution to the instance of the AN-MCF
problem if and only if the corresponding R’ is a solution to the
corresponding instance of the failure handling problem, thus
the AN-MCF problem can be reduced to the failure handling
problem. U

., Skt

ACKNOWLEDGEMENTS

Part of this work was presented in ACM EuroSys’16 [37].
The authors thank the anonymous EuroSys and TON reviewers
for their constructive comments and Harsha Madhyastha for
his detailed feedback and suggestions.

REFERENCES

[1] C.-Y. Hong et al., “Achieving high utilization with software-driven
WAN,” in Proc. ACM SIGCOMM, 2013, pp. 15-26.

[2] S.Jain et al., “B4: Experience with a globally-deployed software defined
WAN,” in Proc. ACM SIGCOMM, 2013, pp. 3-14.

[3] Y. Chen, S. Jain, V. K. Adhikari, Z.-L. Zhang, and K. Xu, “A first look
at inter-data center traffic characteristics via Yahoo! Datasets,” in Proc.
INFOCOM, 2011, pp. 1620-1628.

[4] S. Kandula, I. Menache, R. Schwartz, and S. R. Babbula, “Calendaring
for wide area networks,” in Proc. ACM SIGCOMM, 2014, pp. 515-526.

[5] R. llisley, (2012). Why DC-DC WAN Optimization Matters.
[Online]. Available: http://www.telecomasia.net/content/why-dc-dc-
wan-optimization-matters?page=1

[6] C. Guo et al., “SecondNet: A data center network virtualization
architecture with bandwidth guarantees,” in Proc. 6th CoNEXT, 2010,
Art. no. 15.

[7] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in Proc. SIGCOMM, 2011,
pp- 242-253.

[8] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The only constant
is change: Incorporating time-varying network reservations in data
centers,” in Proc. SIGCOMM, 2012, pp. 199-210.

594

[9]

[10]

(1]

[12]

[13]

[14]

[15]
[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]
(32]

[33]

[34]

[35]

[36]

N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez, “Inter-datacenter
bulk transfers with netstitcher,” in Proc. SIGCOMM, 2011, pp. 74-85.
V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron,
“Bridging the tenant-provider gap in cloud services,” in Proc. ACM
SoCC, 2012, Art. no. 10.

C. Jayalath, J. Stephen, and P. Eugster, “From the cloud to the
atmosphere: Running MapReduce across data centers,” IEEE Trans.
Comput., vol. 63, no. 1, pp. 74-87, Jan. 2014.

H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter, “Traffic
engineering with forward fault correction,” in Proc. ACM SIGCOMM,
2014, pp. 527-538.

L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, pp. 133-169, May 1998. [Online]. Available:
http://doi.acm.org/10.1145/279227.279229

B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum, and
A. C. Snoeren, “Cloud control with distributed rate limiting,” ACM
SIGCOMM Comput. Commun. Rev., vol. 37, no. 4, pp. 337-348, 2007.
A. Kumar et al., “BwE: Flexible, hierarchical bandwidth allocation for
WAN distributed computing,” in Proc. ACM SIGCOMM, 2015, pp. 1-14.
Source Routing. accessed on Dec. 2013, [Online]. Available:
http://en.wikipedia.org/wiki/Sourcerouting

E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label switching
architecture,” RFC 3031, 2001.

N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp- 69-74, Apr. 2008.

S. Hu et al., “Explicit path control in commodity data centers: Design
and applications,” in Proc. 12th NSDI, 2015, pp. 15-28.

L. R. Ford, Jr., and D. R. Fulkerson, “Constructing maximal dynamic
flows from static flows,” Oper. Res., vol. 6, no. 3, pp. 419433,
1958.

P. Gill, N. Jain, and N. Nagappan, “Understanding network fail-
ures in data centers: Measurement, analysis, and implications,” ACM
SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 350-361,
Aug. 2011.

N. E. Young, “Sequential and parallel algorithms for mixed packing and
covering,” in Proc. 42nd IEEE Symp. Found. Comput. Sci., Oct. 2001,
pp- 538-546.

H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes, “Gate-
keeper: Supporting bandwidth guarantees for multi-tenant datacenter
networks,” in Proc. 3rd WIOV, 2011, p. 6.

V. Jeyakumar et al., “EyeQ: Practical network performance isolation at
the edge,” in Proc. 10th USENIX NSDI, 2013, pp. 297-312.

L. Popa et al, “ElasticSwitch: Practical work-conserving bandwidth
guarantees for cloud computing,” in Proc. ACM SIGCOMM, 2013,
pp- 351-362.

S. Hu et al., “Providing bandwidth guarantees, work conservation and
low latency simultaneously in the cloud,” in Proc. INFOCOM, 2016,
pp. 1-9.

C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” ACM SIGCOMM
Comput. Commun. Rev., vol. 41, no. 4, pp. 50-61, Aug. 2011.

B. Vamanan, J. Hasan, and T. N. Vijaykumar, “Deadline-aware datacen-
ter tcp (D2TCP),” in Proc. ACM SIGCOMM, 2012, pp. 115-126.
C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly
with preemptive scheduling,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 4, pp. 127-138, 2012.

D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail: Reducing
the flow completion time tail in datacenter networks,” ACM SIGCOMM
Comput. Commun. Rev., vol. 42, no. 4, pp. 139-150, 2012.

M. Alizadeh et al., “pFabric: Minimal near-optimal datacenter transport,”
in Proc. SIGCOMM, 2013, pp. 435-446.

W. Bai et al., “Information-agnostic flow scheduling for commodity data
centers,” in Proc. 12th NSDI, 2015, pp. 455-468.

B. B. Chen and P. V.-B. Primet, “Scheduling deadline-constrained bulk
data transfers to minimize network congestion,” in Proc. 7th CCGRID,
vol. 7. 2007, pp. 410-417.

K. Rajah, S. Ranka, and Y. Xia, “Advance reservations and scheduling
for bulk transfers in research networks,” IEEE Trans. Parallel Distrib.
Syst., vol. 20, no. 11, pp. 1682-1697, Nov. 2009.

J. A. Stankovic, M. Spuri, K. Ramamritham, and G. Buttazzo, Dead-
line Scheduling for Real-Time Systems: EDF and Related Algorithms,
vol. 460. New York, NY, USA: Springer, 2012.

A. Venkataramani, R. Kokku, and M. Dahlin, “TCP nice: A mechanism
for background transfers,” ACM SIGOPS Oper. Syst. Rev., vol. 36, no. SI,
pp- 329-343, 2002.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

[37] H. Zhang et al., “Guaranteeing deadlines for inter-datacenter transfers,”

in Proc. 10th EuroSys, 2015, Art. no. 20.

[38] C. Chekuri, S. Khanna, and F. B. Shepherd, “The all-or-nothing mul-

ticommodity flow problem,” in Proc. 36th Annu. ACM Symp. Theory
Comput., 2004, pp. 156-165.

Hong Zhang received the B.S. and M.S. degrees
from the Department of Electronics and Information
Engineering, Huazhong University of Science and
Technology, China, in 2010 and 2013, respectively.
He is currently pursuing the Ph.D. degree in com-
puter science with The Hong Kong University of
Science and Technology. His current research inter-
ests are in the area of data center networks.

Kai Chen received the Ph.D. degree in computer
science from Northwestern University, Evanston, IL,
USA, in 2012. He is an Assistant Professor with the
Department of Computer Science and Engineering,
The Hong Kong University of Science and Tech-
nology, Hong Kong. His research interest includes
networked systems design and implementation, data
center networks, and cloud computing.

Wei Bai received the B.E. degree in information
security from Shanghai Jiao Tong University China
in 2013. He is currently pursuing the Ph.D. degree
in computer science with The Hong Kong University
of Science and Technology. His current research
interests are in the area of data center networks.

Dongsu Han received the B.S. degree in computer
science from the Korea Advanced Institute of Sci-
ence (KAIST) in 2003, and the Ph.D. degree in
. computer science from Carnegie Mellon University

e in 2012. He is currently an Assistant Professor with
£ the School of Electrical Engineering and Gradu-
ate School of Information Security, KAIST. He is

interested in networking, distributed systems, and
network/system security.

Chen Tian received the B.S., M.S., and
Ph.D. degrees from the Department of Electronics
and Information Engineering, Huazhong University
of Science and Technology, China, in 2000,
2003, and 2008, respectively. He was an Associate
Professor with the School of Electronics Information
and Communications, Huazhong University of
Science and Technology. He is an Associate
Professor with the State Key Laboratory for Novel
Software Technology, Nanjing University, China.
From 2012 to 2013, he was a Post-Doctoral

Researcher with the Department of Computer Science, Yale University.
His research interests include data center networks, network function
virtualization, distributed systems, Internet streaming, and urban computing.

ZHANG et al.: GUARANTEEING DEADLINES FOR INTER-DC TRANSFERS

Hao Wang received the B.E. and M.E. degrees
from Shanghai Jiao Tong University in 2012 and
2015, respectively. He is currently pursuing the
Ph.D. degree with the University of Toronto. During
his master’s studies, he was a Research Assistant
with The Hong Kong University of Science and
Technology for 14 months. His research interests
include datacenter networking, distributed comput-
ing, and software defined networking.

Haibing Guan received the Ph.D. degree in
artificial intelligence from Tongji University,
Shanghai, China, in 1999. He is currently
a Professor with the School of Electronic,
Information and Electronic Engineering, Shanghai
Jiao Tong University, Shanghai, and the Director
of the Shanghai Key Laboratory of Scalable
Computing and Systems. His research interests
include distributed computing, network security,
network storage, green IT, and cloud computing.

595

Ming Zhang was a Senior Researcher with
Microsoft Research Redmond for over ten years,
during which time he delivered multiple key tech-
nologies that power the massive cloud networks of
Microsoft Azure. He is a Senior Director of Alibaba
Infrastructure Service, where he leads the devel-
opment of automation systems that keep Alibabas
global datacenter networks running reliably, effi-
ciently, and at scale. He holds 16 U.S. patents
and seven patents files and publishes many seminal
research papers in top systems and networking con-

ferences, including the ACM SIGCOMM, OSDI, and NSDI. His research was
featured in influential media outlets, such as BBC, CNN, MIT Tech Review,
and The Verge.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

