1802

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Accelerating End-to-End Deep
Learning Workflow With Codesign of
Data Preprocessing and Scheduling

Yang Cheng™, Dan Li

, Zhiyuan Guo, Binyao Jiang, Jinkun Geng™, Wei Bai,

Jianping Wu, and Yonggiang Xiong

Abstract—In this article, we investigate the performance bottleneck of existing deep learning (DL) systems and propose DLBooster to
improve the running efficiency of deploying DL applications on GPU clusters. At its core, DLBooster leverages two-level optimizations to
boost the end-to-end DL workflow. On the one hand, DLBooster selectively offloads some key decoding workloads to FPGAs to provide
high-performance online data preprocessing services to the computing engine. On the other hand, DLBooster reorganizes the
computational workloads of training neural networks with the backpropagation algorithm and schedules them according to their
dependencies to improve the utilization of GPUs at runtime. Based on our experiments, we demonstrate that compared with baselines,
DLBooster can improve the image processing throughput by 1.4x —2.5x and reduce the processing latency by 1/3 in several real-world
DL applications and datasets. Moreover, DLBooster consumes less than 1 CPU core to manage FPGA devices at runtime, which is at
least 90 percent less than the baselines in some cases. DLBooster shows its potential to accelerate DL workflows in the cloud.

Index Terms—Deep learning, data preprocessing, workload offloading, computation scheduling, FPGAs

1 INTRODUCTION

OwWADAYS deep learning (DL) has led to great success
N in many areas, such as computer vision (CV) [2], natu-
ral language processing (NLP) [3], etc. Given the preva-
lence of DL, we have witnessed many efforts made to
accelerate DL workloads during the past few years, espe-
cially in the cloud, where more than 96 percent of DL
applications [4] are deployed today. For instance, many DL
frameworks, such as MXNet [5], PyTorch [6], and Tensor-
Flow [7], are well optimized for the cloud, serving as
cloud infrastructure toolkits. High-performance computa-
tion and communication technologies are also rapidly
developing [8] to speed up the compute- and communica-
tion-intensive DL workloads. For example, emerging hard-
ware accelerators, such as GPUs [9], TPUs [10], and FPGAs
[11], have been widely used to speed up DL training/infer-
ence. Remote Direct Memory Access (RDMA) [12], which

o Yang Cheng, Dan Li, Jinkun Geng, and [ianping Wu are with Tsinghua
University, Beijing 100084, China. E-mail: cheng-y16@mails.tsinghua.
edu.cn, tolidan@tsinghua.edu.cn, steam1994@163.com, jianping@cernet.
edu.cn.

o Zhiyuan Guo is with Beihang University, Beijing 100191, China and also
with Microsoft Research, Beijing 100080, China.

E-mail: v-zhguo@microsoft.com.

e Binyao Jiang is with Shanghai Jino Tong University, Shanghai 200240,
China , and also with Microsoft Research, Beijing 100080, China.

E-mail: v-bijian@microsoft.com.

o Wei Bai and Yongqiang Xiong are with Microsoft Research, Beijing
100080, China. E-mail: {weibai, yongqiang-xiong@microsoft.com.

Manuscript received 1 July 2020; revised 24 Oct. 2020; accepted 30 Nov. 2020.
Date of publication 29 Dec. 2020; date of current version 11 Feb. 2021.
(Corresponding author: Dan Li.)

Recommended for acceptance by P. Balaji, |. Zhai, and M. Si.

Digital Object Identifier no. 10.1109/TPDS.2020.3047966

achieves high throughput and low latency with near-zero
CPU overhead, is used to improve the communication of
distributed DL workloads [13].

Having revisited a massive volume of prior works [14],
[15], [16], [17], we find that most of them focus on how to
speed up the workloads of training/inferring complex neu-
ral networks (NNs) [3], [18], [19], but ignore the other
parts of the end-to-end DL workflow, such as data prepro-
cessing, in which raw data with various formats and
shapes are converted into the unified feature vectors to be
fed into NNs for training/inference. As a fundamental
step of DL workflows, data preprocessing can put a signifi-
cant impact on the overall performance of DL applications.
Moreover, as more emerging hardware and software opti-
mizations are available, the training/inference speed has
been greatly improved [14], [16], making the data prepro-
cessing an increasing bottleneck in DL workflows. Particu-
larly in the experiment of training AlexNet [2] on a GPU
cluster, we find that: (1) When using LMDB [20] as the
data preprocessing backend, Caffe [21] loses training per-
formance (i.e., image processing throughput) by up to 40
percent. (2) After switching to the runtime data preprocess-
ing with 4 CPU cores (by default), the throughput even
degrades by up to 60 percent, and the training perfor-
mance gaps of Caffe are finally made up by burning as
many as 12 CPU cores for each GPU.

As a compute-intensive application, efficient data pre-
processing backends are urgently needed by deploying DL
workflows on GPUs. Revisiting the data preprocessing
backends widely used today, we find that they often fail to
provide satisfying data preprocessing services with several
limitations, particularly in the cloud. For example, the off-
line data preprocessing backends, such as TFRecord [22],

1045-9219 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: MICROSOFT. Downloaded on May 03,2021 at 03:29:30 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7560-9150
https://orcid.org/0000-0001-7560-9150
https://orcid.org/0000-0001-7560-9150
https://orcid.org/0000-0001-7560-9150
https://orcid.org/0000-0001-7560-9150
https://orcid.org/0000-0001-6358-4443
https://orcid.org/0000-0001-6358-4443
https://orcid.org/0000-0001-6358-4443
https://orcid.org/0000-0001-6358-4443
https://orcid.org/0000-0001-6358-4443
https://orcid.org/0000-0002-6574-8349
https://orcid.org/0000-0002-6574-8349
https://orcid.org/0000-0002-6574-8349
https://orcid.org/0000-0002-6574-8349
https://orcid.org/0000-0002-6574-8349
mailto:cheng-y16@mails.tsinghua.edu.cn
mailto:cheng-y16@mails.tsinghua.edu.cn
mailto:tolidan@tsinghua.edu.cn
mailto:steam1994@163.com
mailto:jianping@cernet.edu.cn
mailto:jianping@cernet.edu.cn
mailto:v-zhguo@microsoft.com
mailto:v-bijian@microsoft.com
mailto:weibai@microsoft.com
mailto:yongqiang-xiong@microsoft.com

CHENG ETAL.: ACCELERATING END-TO-END DL WORKFLOW WITH CODESIGN OF DATA PREPROCESSING AND SCHEDULING

RecordIO [23], and LMDB [20], introduce significant time
costs when processing the training data offline first, thus
not suitable for the online inference tasks. Burning a vol-
ume of CPU/GPU cores [24], [25] at runtime is another
choice to offer online data preprocessing services to the
NNs training/inferring. However, it also has the follow-
ing shortcomings: (1) First, burning too many CPU/GPU
cores for data processing will degrade the training/infer-
ence performance by competing for the CPU/GPU cores
with them. (2) Second, including the offline backends,
those approaches introduce expensive costs to both cloud
users and cloud service providers: (i) On the one hand,
cloud users are expensively charged for the resources
they used in terms of both time and amount. (ii) On the
other hand, burning too many CPU/GPU cores can
result in high power consumption, thus increasing the
maintenance costs of the cloud. To name but a few, there
are many defects (Section 2.2) widely existing in current
DL systems [20], [22], [23], [24], [25] but not well solved,
making data preprocessing the distinct bottleneck of DL
workflows, especially in the cloud.

Benefiting from the programming flexibility while
providing hardware-like performance [26], the field-pro-
grammable gate array (FPGA) [11] enables us to offload
heavy workloads on it to reduce the burden on software
systems. After several years of rapid development, FPGAs
have built a maturing ecosystem [27], and the application
of FPGAs has led to a revolution in many areas [28], [29].
Meanwhile, the declining price and low power consump-
tion of FPGA devices (Section 7) also strengthen the advan-
tages of running large-scale FPGA-based applications.
Today, FPGAs have been deployed [29], [30], [31] at scale to
speed up emerging workloads in the cloud, such as NNs
training [28], networking service [26], etc. The success of
FPGAs in speeding up cutting-edge applications also shows
its potential to improve the performance of DL tasks.

Considering the distinct performance bottleneck of data pre-
processing in DL workflows and the potential of FPGAs to
accelerate cutting-edge applications, we propose DLBooster in
this work to meet the increasing demands on data preprocess-
ing from emerging DL applications. DLBooster provides online
data preprocessing services with high performance by offload-
ing some key decoding workloads to FPGAs. With DLBooster,
DL systems can efficiently process data and move them into
GPU engines with high speed when training/inferring NNs in
a multi-GPU cluster. However, DLBooster is still faced with the
following challenges:

(1) Codesign of Hardware and Software. Different from soft-
ware systems, DLBooster is a system which needs to con-
sider the coexistence of software and hardware. For
example, (i) how to deal with the different data accessing
approaches between FPGA hardware and userspace pro-
grams? (ii) How to design the communication channels and
primitives to pipeline the decoding modules for high perfor-
mance? We will discuss them in Sections 3, 4.2.1 and 4.2.2.

(2) Balance Between Resource Constraint and Workload.
Naively offloading all data preprocessing workloads to
FPGAs is quite inefficient, limited by the hardware con-
straints. Therefore, we need to rethink what kind of work-
loads to offload and how to organize them in FPGAs to
achieve the expected performance. Those considerations

1803

and design details will be well discussed in Sections 3.1
and 4.1.

(3) Compatibility With Different DL Applications and Settings.
Serving as a general-propose data preprocessing backend,
DLBooster should keep open to the mainstream DL applica-
tions and frameworks. To this end, we design DLBooster with
the pluggable FPGA decoder (Section 4.1) and expose simple
yet efficient APIs, so that it can be easily integrated into popu-
lar DL frameworks for use in practice.

With careful designs, we implement the prototype of
DLBooster and integrate it into two popular DL engines
(i.e., TensorRT [32] and NVCaffe [33]) with slight modifica-
tions. Moreover, we demonstrate the efficiency of DLBoos-
ter with experiments on two real-world image processing
tasks, namely, local training and online inference. We find
that DLBooster can not only improve the image processing
throughput by 1.4x-2.5x, but also reduce 1/3 image proc-
essing time. Moreover, DLBooster consumes less than 1
CPU core, which is at least 90 percent less than the baselines
in some cases.

In addition to the data preprocessing optimization, we
have also focused on improving the computation efficiency
when training NNs on GPUs via the backpropagation (BP)
algorithm (Section 5). Given that modern NNs usually con-
tain many layers, which involve different computational
workloads (varied CUDA kernels [34]) with dependencies,
efficiently training NNs requires fully utilizing the hard-
ware resources when executing the kernels on GPUs. How-
ever, the overhead of launching kernels is non-negligible
[35], [36], particularly for small layers where the computing
resources are not fully utilized. To mitigate the impact, we
separate the error propagating computations from the gra-
dients computing workloads according to their dependen-
cies and dispatch them onto multiple CUDA streams with
different priorities [37]. In this way, computations for the
two parts (in different layers) are overlapped, and the GPU
utilization is also improved. Our experiment on NVCaffe
shows that the training performance can be further
improved by up to 14 percent by scheduling the BP work-
flow (Section 6.1.2).

In summary, the main contributions of this paper are:

e We reveal the increasing distinct bottleneck of data
preprocessing in current DL workflows with com-
prehensive studies and analyses.

e We design an online data preprocessing backend by
selectively offloading key workloads to FPGAs to
provide the decoding service in DL workflows.

e Wereorganize and schedule the workloads in the BP
workflow according to their dependencies to
improve the hardware utilization when training
NNs on the GPU.

e We demonstrate the potential of DLBooster to accel-
erate emerging DL workflows with experiments on
several real-world DL applications and datasets.

The rest of this paper is organized as follows: Section 2
presents the background of the end-to-end DL workflow,
showing the challenges of modern DL deployments.
Sections 3, 4, and 5 present the design details of DLBooster.
Section 6 demonstrates the efficiency of DLBooster with
experiments on typical real-world image processing tasks

Authorized licensed use limited to: MICROSOFT. Downloaded on May 03,2021 at 03:29:30 UTC from IEEE Xplore. Restrictions apply.

Cloud Inference Server

Labels 6: return prediction

m 2: send to server

- —
e -
—
—

TensorFlow

TensorRT

Decoding and Cropping,
resizing I A—i rotating, ...
L2
3.1: Feature 3.2: Data
extraction augmentation

Raw image in JPEG
format. Shape: 20 * 12

Decoded/resized pixel
matrix. Shape: 5 * 5

Cropped pixel
matrix, Shape: 3 * 3

Fig. 1. An example of the online image inference task to present the end-
to-end DL workflow.

and datasets. We discuss the benefits and optimizations of
DLBooster in Section 7, present the related work in Section 8,
and conclude this work in Section 9.

2 BACKGROUND AND MOTIVATION

2.1 End-to-End DL Workflow

DL [38] is an efficient approach that uses a large num-
ber of connected neurons to solve complex optimization
tasks today. Fig. 1 presents the details of the DL work-
flow from an end-to-end view, which consists of the fol-
lowing parts.

Data collecting is the first step in the DL workflow. Nowa-
days training complex DL models relies on rich datasets. In
general, data collecting is task-specific and costly, which
requires great efforts of users to collect massive volumes of
data samples according to their tasks. To facilitate the appli-
cation of DL, there are many open free task-specific datasets
maintained by the communities, such as ImageNet [39],
AudioSet [40], M]Synth [41], etc.

Data preprocessing converts the raw data in various for-
mats into the unified input of NNs, and it can be divided
into two steps in general. The first is feature extraction,
where data features are extracted and reshaped to match
the input layer of NNs. The second is data augmentation,
which improves the diversity of datasets to avoid the overfit-
ting problem when training NNs with small datasets. As a
fundamental step in the DL workflow, data preprocessing
tackles volumes of data in various formats for different DL
tasks. For instance, in image processing tasks [2], the pixel
matrices are extracted from the raw images in various for-
mats (e.g., PNG, JPEG). In speech processing tasks [42], the
spectra information of audio is decoded by the discrete
cosine transform (DCT). In NLP tasks [3], the vectorized fea-
tures are extracted from the texts in different languages.

Training/inference is the core part of DL applications. (1)
When DL models (i.e., NNs) are first built, they will be
trained with datasets to model the tasks. The stochastic gra-
dient descent (SGD) [43] is the de facto algorithm of training
NNs with iterative computation. (2) Being well trained, the
DL models will be inferred to make predictions to the
unknown data with high accuracy. Different to training, DL
models are only forwarded once in the inference workflow.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

TABLE 1
Profiling of Using Caffe[21] to Train AlexNet With Real-World
Dataset on a GPU Cluster

x 1 P100 GPU (2512 images/s) x 2 P100 GPUs (4648 images/s)

Metric cPu CPU crU crU
IMDB. (gefault) (maxperf) "™MPP (default) (max perf)
Throughput g, 987 2280 3230 1820 4318
(images/s)
CPU costs 3 4 10 5 8 21

(# of cores)

GPU training 8%
perf. loss

The batch size is 256 images/GPUI.

60.4% 9.2% 39.1% 60.8% 7.1%

Today, NNs usually go deeper (i.e., DNNs) [18], and
training such DNNSs is costly. Many accelerating technolo-
gies (e.g.,, GPU/TPU/FPGA accelerators and distributed
training [43]) are studied to speed up the DL workloads. As
DL applications are becoming popular in the cloud [4],
where rich computation resources are available, it is increas-
ingly important to improve the efficiency of DL workflows.

2.2 Defects in Existing Data Preprocessing
Backends

Today, many DL frameworks have provided the data pre-
processing backends to process huge volumes of data,
which can be categorized into two types, namely, online
primitive and offline primitive. The offline primitive processes
the training data in advance and loads the processed data
from lightweight databases (DBs) for next time use, such
as TFRecord [22] in TensorFlow, LMDB [20] in Caffe,
RecordIO [23] in MXNet, etc. On the contrary, the online
primitive provides high-performance online data prepro-
cessing services by burning a lot of CPUs/GPUs to decode
at runtime.

However, according to our studies, most data prepro-
cessing backends widely used today are inefficient with
several limitations. Particularly, in our experiment (summa-
rized as Table 1) on training AlexNet with the ILSVRC12
[39] dataset in a GPU cluster (2 P100 GPUs), we observe
39.1 and 60.8 percent of training performance loss in Caffe
[21] when using LMDB and the CPU-based backend (with
default configurations) respectively, compared to training
with synthetic data. Caffe using the CPU-based backend
makes up training performance gaps by burning around 10
CPU cores for each GPU. Those data preprocessing back-
ends are becoming the bottleneck in modern DL workflows,
which can be more severe when GPUs are faster. The
defects of existing data preprocessing designs are described
as follows.

(1) Performance Degradation. Both online and offline data
preprocessing backends suffer from performance degrada-
tion for the following reasons:

e The offline primitive backends such as LMDB require
a fine-grained data cache mechanism and a large
memory configuration, which is not always met
when datasets grow larger. For instance, in our
experiment, the LMDB-enabled Caffe loses the train-
ing performance because LMDB runs out of memory
and reloads data in large blocks (the processed data
are much larger) from disks.

Authorized licensed use limited to: MICROSOFT. Downloaded on May 03,2021 at 03:29:30 UTC from IEEE Xplore. Restrictions apply.

CHENG ETAL.: ACCELERATING END-TO-END DL WORKFLOW WITH CODESIGN OF DATA PREPROCESSING AND SCHEDULING

e The offline primitive backends are inefficient or cannot
work in some DL tasks such as online inference,
which requires ultralow processing latency.

e The online primitive backends, such as nvJPEG [24]
and the CPU-based backend, are blamed for burning
too many GPU/CPU cores at runtime, which results
in they competing for the limited computing resour-
ces with the other modules in an end-to-end DL
workflow, such as parameter aggregation [44] in dis-
tributed training, or the computation of inferring/
training NNs [32].

e The online primitive backends scale poorly as more
GPUs are inserted into a server. For example, in
DGX-2 [9], which contains 2 Xeon E5 CPUs (48 cores
in all) and 16 V100 GPUs, each V100 GPU can use
only 3 CPU cores on average. However, we find that
a V100 GPU can process as many as 5,000 images per
second in the inference of ResNet-50, while each
CPU core can only provide online data preprocess-
ing services of approximately 300 images per second.
There is a big mismatch between GPU/CPU perfor-
mance and configurations.

(2) Expensive Cost. Currently, many data preprocessing

designs that are widely used today are suffering from
expensive costs in terms of both economy and time:

e The offline primitive backends usually take a lot of
time to process the data in advance. For instance, it
takes us 2 hours to convert ILSVRC12 [39] into the
LMDB-formatted data.'" The nontrivial time costs
harm the interests of users who deploy DL tasks on
the cloud, because VM instances are sold at an
expensive price based on the time they are occupied.

e The online primitive backends usually burn a lot of
CPU/GPU cores to process the data at runtime,
which bring expensive costs to both cloud providers
and users for the following reasons: (i) Both GPUs
and CPUs are much expensive in the cloud. (ii) The
high power consumption increases the maintenance
costs of the cloud.

2.3 Computation Efficiency of Training NNs on GPU
Currently, many high-performance computing accelera-
tors are used to speed up the training of modern NNs in
practice, such as GPUs. Different to the programs run-
ning on CPUs, GPU-based programs run in an asynchro-
nous way for the parallel computing performance of
GPU hardware. Therefore, a fine-grained computation
managing mechanism is desired to schedule a large
number of computing tasks running in parallel to make
full use of the GPU computing resources, thus boosting
the performance of applications.

Training NNs is a typical application of GPUs, and
many advanced software libraries provide well-optimized
DL operators to boost the computation for NNs on GPUs,
such as cuBLAS [34] and cuDNN [45]. In fact, neurons are
usually organized layer by layer in modern NNs [18], [19],

1. Recent works [14], [15], [16], [17] show that training ResNet-50 can
be done in minutes, but we find that they do not take the data prepro-
cessing into considerations, which is impractical.

1805

and there are dependencies between these layers. Gener-
ally, each layer has different computational workloads.
However, we note that (1) limited by the dependency,
computational workloads at different layers cannot be exe-
cuted in parallel. (2) It is nontrivial to launch a CUDA ker-
nel on the GPU [46], especially for the small computing
event. The characteristics would make it hard to promise
that GPU computing resources are fully utilized at any
time [46] during the training, even with the fine-grained
DL operators which lack the global view of the entire DL
workflow. Particularly, we have observed that the GPU uti-
lization is only around 90 percent when training ResNet-50
with a large batch size, and it is even lower in the training
with small batch size settings.

2.4 Our Motivation

From the above studies, we conclude that: (1) The widely
used data preprocessing backends suffer from several
defects, making them the increasing bottleneck in modern
DL workflows. Given the rapid development of GPUs, this
situation will get worse. (2) The computation efficiency of
training NNs on GPUs is closely related to the hardware
utilization (varied workloads), which can be further
improved by the fine-grained scheduling. These observa-
tions motivate us to propose DLBooster with the codesign
of data preprocessing (Section 4) and computational work-
loads scheduling (Section 5) to speed up emerging DL
workflows in the cloud.

3 DLBOOSTER DESIGN: OVERVIEW

3.1 Design Principles
We design DLBooster with the following considerations:

Offering Hybrid Data Preprocessing Service. Having wit-
nessed the defects of the offline backends (Section 2.2),
DLBooster is designed as an online backend. However,
DLBooster can also cache the processed data to avoid
repeated workloads in iterative DL tasks (e.g., training), in
which DLBooster processes all raw data in the first epoch
and caches the processed data on memory/disks for future
reuse.

Selectively Offloading Decoding Workloads to FPGAs. Differ-
ent from other online data preprocessing backends, which
burn a volume of CPU/GPU cores, DLBooster offloads the
decoding workloads to FPGAs with the following consider-
ations: (1) CPUs and GPUs are irreplaceably required by
other workloads in the DL workflow, such as parameter
aggregating in distributed training or computing NNs for
training/inference. (2) FPGAs can achieve the competitive
decoding performance at a lower price.

However, to achieve the balance between the computa-
tional workloads and hardware constraints, we choose to
offload partial decoding workloads that can be efficiently
executed on hardware to FPGAs, instead of all the work-
loads. For example, in the design of the image processing
decoder demo, we only offload the Huffman decoding and
resizing workloads to FPGAs for fast data processing and
leave the data augmentation to GPUs to make full of the
large volume of GPU memory.

Keeping Programming Flexibility. A big concern about
deploying FPGAs at scale is the flexibility of programming

Authorized licensed use limited to: MICROSOFT. Downloaded on May 03,2021 at 03:29:30 UTC from IEEE Xplore. Restrictions apply.

1806 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021
Data Plane read cmd FPGA Decoder decode cmd Host Bridger Iaunch kernel Compute Engine
T T Data Flow
. I 2 ”’ S5 o
o Blocks Queues S =
z : g a : i | | | | | | / Trans Queues c%: =3
M- | 9 o 3
O DDt M g, (Ll)t =
s | 3 - 2 5@ Recycle Path
o)) o S o35
. - @ < 9o &
= Y o g N N
g ® 2 33z —
| 75 || 7 23
z| 8 T Q 03 3 || control
=z & Packets Queues 3 rans Queues 23 ontrol Flow
5 9 —> || l6[s]a|3]2]1] m§
m Full_Batch_Queue
—

Fig. 2. DLBooster architecture. From the logical view, there are 4 layers used to organize and accommodate multiply devices. Each layer is connected
with its neighboring layers. Data are moved in the directions: NIC/disk — FPGA decoder — host bridger — GPU device.

with FPGA hardware. To this end, we have the following
considerations to design DLBooster as a general data pre-
processing backend: (1) In the design of the FPGA decoder,
DLBooster allows users to rebuild various decoding logic
with OpenCL [47] and freely download the corresponding
decoding logic to the FPGA device for different DL tasks
(e.g., speech/image/video). (2) As for the flexibility of use,
DLBooster coexists with other data preprocessing backends,
benefiting from the isolation design. Moreover, DLBooster
provides simple interfaces to users, which allow them to
integrate it into different DL systems with less effort.

3.2 DLBooster Architecture

DLBooster codesigns hardware and software, and the archi-
tecture of DLBooster is shown in Fig. 2. From the logical
view, DLBooster is composed of four layers, namely, data
plane, FPGA decoder, host bridger, and computing engine,
which we present in a bottom-to-top order as follows.

The data plane is the first layer of DLBooster. It caches data
on local disks or fetches them from the Internet (NIC) for
different DL tasks. The fetched data are then fed into the
decoder in FPGAs for future use.

The FPGA decoder is located in the FPGA device, and it is
used to process the data at runtime. It fetches the raw data
from the data plane and processes them. After that, it deliv-
ers the processed data to the host bridger. The decoding
logic is task-specific and replaceable, which allows users to
rebuild the desired decoding logic for various tasks.

The host bridger is the key part of DLBooster, which con-
nects the decoder in FPGAs with the GPU computing engines.
The host bridger contains three sub-modules, namely,
FPGAReader, GPUHandler, and Dispatcher. The FPGAReader is
an abstraction of the decoder in FPGAs to manage it in user
space, whereas the GPUHandler offers operating interfaces to
manage the computing engine instances in GPUs. The Dis-
patcher is built to move the data from the host memory to the
GPU devices in computing engines with a memory pool, after
they are processed by the FPGA decoder.

The computing engine, which is responsible for the train-
ing/inference workloads in GPUs, is the top layer of
DLBooster. Each GPU is invisible to the others for isolation
and accesses the processed data from a high-speed channel
(i.e., Trans Queue) controlled by the Dispatcher.

All the adjacent components are connected with each
other by high-speed channels to provide high-performance
online data preprocessing services.

4 DATA PREPROCESSING DESIGN

4.1 FPGA Decoder Design

DLBooster builds a decoder with different decoding logic in
FPGAs to handle various data preprocessing workloads,
such as image/video processing, NLP, etc. The decoder in
FPGAs is controlled by the FPGAReader in the host bridger
through two control queues, namely, task queue and comple-
tion quene. We use the example of how a raw image is proc-
essed and delivered in the image processing task to present
the decoder design in detail (shown in Fig. 3).

At first, a decoding cmd is sent to the FPGA decoder via
the task queue. The cmd consists of two entries, namely, the
metainfo (i.e., data indexing, format, location, and shape) of
the raw image and a physical address of host memory to
receive the processed data. Then, the Data loader extracts the
two entries with CMD parser, records the host memory
address by MMU and retrieves the raw image with Data-
Reader according to the metainfo. After that, the fetched raw
image is sent to the decoding kernel, in which it is processed
by the Huffman decoding unit and the iDCT unit in orders to
extract and recover the pixel data. The extracted pixel
matrix is then reshaped by the resizing unit and written to
the host memory (recorded in MMU) via DMA. Finally, the
Finish arbiter sends a finish signal to the corresponding
FPGAReader in the host bridger via the completion queue,

ToGPU |

Host DDR memory

e
task E E
Data T queue”

DMA Addr.
e I

completion PCle

queue

processed -

FPGA Decoder data

Huffman [,
%,
o,

:hannel N
: X 4-way streams
| collector
Huffman |/
ing | &
D

DDR memory on chipset

=]
<
>

———

physical address of host memory

parser 4

DataReader <=

Image channel

Data loader ding kernels

Fig. 3. FPGA decoder architecture, using the image processing task as
an example to show the details.

Authorized licensed use limited to: MICROSOFT. Downloaded on May 03,2021 at 03:29:30 UTC from IEEE Xplore. Restrictions apply.

CHENG ETAL.: ACCELERATING END-TO-END DL WORKFLOW WITH CODESIGN OF DATA PREPROCESSING AND SCHEDULING

indicating that the raw image has been correctly processed
and delivered.

We further optimize the FPGA decoder as follows: (1) We
divide the decoding logic into three module units (i.e., Huff-
man decoding, iDCT and resizing) and scale each of them
with different number of instances according to their work-
loads. For instance, there are a 2-way resizing unit and a
4-way Huffman decoding unit instantiated in our demo
(Section 6). (2) All units run asynchronously in the decoding
pipeline to process the data in parallel. (3) Data are proc-
essed in batches. All data in one batch share one decoding
cmd to avoid the overhead of frequent communication
between the FPGA decoder and the host bridger.

1807

As described in Algorithm 1: At first, FPGAReader initi-
alizes DataCollector, FPGAChannel and mem_pool to prepare
for the following decoding services. In DecodingLoop,
the FPGAReader tries to get a free memory block from the
mem_pool or recycles from the FPGAChannel (lines 9-14).
After that, it encodes a ¢md with a batch of data metainfo
and a physical address of host memory (lines 15-18) and
submits the cmd to the decoder in FPGAs via the FPGA-
Channel (line 19).

The FPGAReader runs in a totally asynchronous way, in
which it can simultaneously submit a mass of decoding
cmds without blocking. Therefore, FPGAReader can achieve
high decoding throughput while keeping low latency.

Algorithm 1. Asynchronous FPGAReader

Algorithm 2. Memory Managing and Dispatching

1: Initilization (data_list, mem_pool, dev_ID)
2 data_collector «— getMetalnfo (data_list)

3 fpga_channel «— FPGAInit (dev_ID)

4: free_batch_q — mem_pool. free_batch_queue

5: full_batch_q < mem_pool. full _batch_queue

6: return

7. DecodingLoop ()

8: while Running do

9: mem_hoder «— free_batch_q.peak();
10: if mem_hoder is invalid then
11: mems «— fpga_channel.drain_out();
12: foreach mem € mems do
13: full_batch_q.push_back(mem);
14: mem_hoder < free_batch_q.pop();
15: cmd «— cmd_generator(batch_size);
16: foreach index € batch do
17: file < data_collector.getNextFile();
18: cmd.encode(file.metainfo, index, mem_hoder.phy

_addr);

19: mems «— fpga_channel.submit(cmd);
20: foreach mem_item € mems do
21: full_batch_q.push_back(mem_item);

22: mem_pool.recycle();
23: fpga_channel.recycle();
24: return

1: initMemoryPool (size, counts)
2: baseAddr — getHugePage (counts * size)
3: foreach index € [0, counts] do
4 item.size < size
5: item.phyAddr «— base Addr + index * size
6 item.virtAddr < phy_to_virt (item.phyAddr)
7 mem_pool. free_batch_queue.push (item)
8: return mem_pool
9: Dispatching (solvers)
10: foreach solver insolvers do
11: cpu_item «— full_batch_queue.blocking_pop()
12: free_tq — solver.Trans_-Queues[FREFE]
13: gpu_item «— free_tq.blocking_pop()

14: GPUMemcpyAsync(gpu_item.decive Addr, cpu_item.virt
Addr, solver.copyStream)
15: working-queue[CPU].push_back(cpu_itemn)

16: working_queue|GPU].push_back(gpu_itern)
17: //recycle mem. buffers by synchronizing streams
18: foreach gpuSolver inSolvers do

19: GPUStreamSync(solver.copyStream)

20: cpu_item «— working_queue|[CPU].pop()

21: gpu_item — working-queue|GPU].pop()

22: solver. Trans_Queues[FULL].push(gpu_item)
23: free_batch_queue.push(cpu_item)

24: return

4.2 Host Bridger Design

To efficiently manage the decoder in FPGAs and the comput-
ing engines in GPUs, the host bridger provides two abstrac-
tions (i.e., decoding abstraction and memory management) in
DLBooster. We present them in detail as follows.

4.2.1 Decoding Abstraction

To provide flexible programmability and mask underlying
operations on hardware to common users, DLBooster
implements an FPGA decoder abstraction (i.e., FPGAR-
eader) in the host bridger. Inside FPGAReader, an FPGA-
Channel, which is composed of a task queue and a completion
queue, is built for the communication between the decoder
in FPGAs and FPGAReader. Besides, a DataCollector is built
to maintain the metainfo of raw data. To efficiently manage
multiple FPGA devices, each FPGAReader is bound to an
FPGA decoder with a unique FPGAChannel and isolated
from the others. The DataCollector is shared globally by all
FPGAReaders.

4.2.2 Memory Management

Note that FPGAs cannot directly operate on the virtual
address of host memory. Therefore, a memory mapping
mechanism (e.g., mmap) is required to translate memory
addresses (virtual — physical) for the FPGA decoder. To
achieve high decoding performance, the FPGA decoder pro-
cesses data in batches. However, mmap cannot allocate such
a contiguous memory block with the large size required by
the FPGA decoder. Therefore, DLBooster redesigns a mem-
ory mapping mechanism based on Linux HugePage [48] to
manage a large block of contiguous memory.

As described in Algorithm 2 (lines 1-8), DLBooster imple-
ments a memory pool to manage memory buffers at runtime
and offers an abstraction for memory access through two
queues (i.e., Free_Batch_Queue and Full Batch Queue). Ini-
tially, a huge block (1 GB by default) of memory with consecu-
tive addresses is allocated to DLBooster. Then, the large
memory block is sliced into small blocks, which are put into
the Free_Batch_Queue for next time use. There are three entries

Authorized licensed use limited to: MICROSOFT. Downloaded on May 03,2021 at 03:29:30 UTC from IEEE Xplore. Restrictions apply.

1808
ZH o"=x! 7! ol =x' zM
AN . /A S
ro— - - -----< [—— ‘
- — — =
/] /
¥ 27 // 1+1
5H / I
oAb b
w b
Forward path Backward path Dependency path
—_—

Fig. 4. DNN structure and dependency chain.

(i.e., virtual address, physical address and block size) in each
block to record its identification.

At runtime, memory blocks flow between the two queues
and act as high-speed carriers that move the data processed
by FPGA decoders from host memory to GPU computing
engines. Each memory block is first sunk into the FPGA
decoder via a decoding cmd. Loading a batch of processed
data, it is then inserted into Full_Batch_Queue. On its other
side, the Dispatcher simultaneously moves the processed
data on each memory block to a GPU device, ending up
with inserting the block into Free_Batch_Queue for next time
use. The Dispatcher asynchronously moves data from mem-
ory pool to multiple GPU devices (shown as the Dis-
patching in line 9 of Algorithm 2).

5 OpTiMIZING BP COMPUTATION WORKFLOW

Nowadays, BP is the most widely used algorithm to train
DNNSs, which follows the chain rule (shown as Fig. 4) with
strict dependencies. Training a DNN with BP can be per-
formed in two steps: namely, a forward pass, in which the
training data are forwarded through the NN layer by layer
to compute a loss (£), and a backward pass, where the loss is
propagated in a reversed order to compute gradients (VI
V) of parameters (I¥, b) in each layer.

5.1 Partial Dependency in BP Workflow
As shown in Fig. 4, there is a partial dependency between
the computational workloads of training NNs with BP. We
take the example of how gradients are computed on a layer
to show the details. In the backward stage (refer to the Back-
ward Path in Fig. 4), there are two main computing events to
be launched in each layer, namely, propagating the loss (8)
to its previous layer (Eq. (1)) and computing gradients for
the weighted kernel (Eq. (2)) and bias (Eq. (3)) on the current
layer. From Equations (1), (2), and (3) and Fig. 4, we can find
that the computing events on each layer require the loss (8)
from its neighboring layer (upper) and the data (summa-
rized in Table 2) on the current layer, which means that the
loss from upper layers has already been propagated to the
current layer before those computing events are launched.
When training NNs on GPUs, the computing engines in
DL frameworks (e.g., Caffe, MxNet, TensorFlow, etc.) usu-
ally organize computing tasks by groups® (or layers) and
asynchronously submit them to GPUs via CUDA streams
for parallel execution [5], [21], [34], [45]. Computing engines

2. Although many DL frameworks provide low-level DL operators
to describe the fine-grained computing tasks, modern DNNs are usu-
ally built using high-level DL operators provided by cuDNN and
cuBLAS to achieve high performance on GPUs.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

TABLE 2
Notions of the Forward/Backward Pass
When Running BP on DNNs

symbol description
b Bias in layer [.
w! Weighted kernel in the I*" layer.
X! X!'= 0'"!, is the input feature map in the ['" layer.
Z! 7' = X' © W' + ' is the temporary output feature

map of layer [, where ® is a operator (conv. for Conv.
layer and mul for FC layer).
o' O' = o (Z') is the output feature map of layer .
Activation function. It gives nonlinear transforma-
tion for the temporary output Z' to the real output
O' atlayer [, ie. O' = o (Z")
L L = %[|7 — yl|3 is the loss of NN, where y is the
ground truth and ¢ is the predicted value of the NN.

1 th I oL
1) Loss on the ["" layer. §* = 55

would synchronize those events on CUDA streams before
submitting new ones for the next layer to handle the depen-
dency problem. Considering the lightweight workloads on
small layers (or training with a small batch size), such
coarse-grained submission and synchronization strategies
usually fail to fully utilize the computing resources of GPUs
in training, leaving the potential optimization as follows.
1 oL oL 9z oX!
Tz 9zl ax! ezt
((WZ)T . 8’) ®d (Z71) FC layer @

8t rot180 (Wl) ©] G’(Zlil) Cov. layer

oL aL oL

1 _ 1 [
oL oL Az
=== = = T
Vb bl ozl b @

5.2 Overlapping Computation on Different Layers
Revisiting Eqgs. (1), (2), and (3), we find that the computation
for each layer only relies on the loss (§') propagated from
the upper layer and the variables (W', X') on the current
layer. Since parameters on each layer are already updated
in the forward pass, and there is no dependency between the
parameter’s gradients (VW', Vb!) on the current layer and
the loss (8'"!) propagated to the previous layer, we can
launch the gradient computing events for the current layer
once the loss from the upper layer is ready. Such a mecha-
nism leaves us the chance to improve GPU utilization by
overlapping® the workloads of computing the loss to the
previous layer and computing gradients of the parameters
on the current layer.

As described in Algorithm 3, we reorganize computing
events of loss propagating and gradients computing on the
GPU. Specifically, we implement a main BP thread, which

3. From the training view, the computation of BP for each layer is
still bound by the dependency chain. Therefore, such overlapping
designs do no harm to the convergence of training

Authorized licensed use limited to: MICROSOFT. Downloaded on May 03,2021 at 03:29:30 UTC from IEEE Xplore. Restrictions apply.

CHENG ETAL.: ACCELERATING END-TO-END DL WORKFLOW WITH CODESIGN OF DATA PREPROCESSING AND SCHEDULING

OCPU EnvJPEG @DLBooster OCPU @nvJPEG [@DLBooster

\
% N e

1920x1080 1024 x 768 500x375
image size
(b) Latency

-
v o

6,000 - 7

ENZ0 N | H

1920x1080 1024 x 768 500x375

image size
(a) Throughput

«
=)
1<)
S]

74

e

S

IS SIS
RNNNNNNNNNNN
decoding latency
(ms)

o w

decoding throughput
(images/s)

Fig. 5. Experiment results of data preprocessing on different backends.

runs on a high-priority CUDA stream [37] (lines 2 — 10), to
handle the loss propagating job. Once the loss has been
propagated to the ith layer, the main BP thread computes the
loss for the [— 1th layer, ending up with notifying the BP
assist threads to compute the gradients of parameters on the
lth layer. Running with high priority, the NN’s loss is rap-
idly propagated from the output layer to the first layer and
will not be affected by other workloads on the GPU. From
the views of BP assist threads, when a new gradient comput-
ing task is submitted by the main BP thread, meaning that
the computational requirements of this task are met, it will
be dispatched to a normal CUDA stream to be executed
according to the workloads on the GPU (lines 12 - 17).

Algorithm 3. Scheduling the Computational Workloads
in the GPU When Running BP on DNNs

1: For main BP thread:

2: foreach iter inlterations do

3: net.sync_and_wait_gradient ()

net.Forward(first_layer, last_layer)

for (I = last_layer; | > first_layer;l--) do
stream «— HIGH_PRIO_CUDA_STREAM
layer[l].BP_over_X(stream)
if layer[l] requires gradient then

9: assist_thread_channel.push(l)

10: assist_thread_channel.push(DONE)

11: For assist BP threads:

12: while not exit do

13: foreach [inassist_thread_channel do

14: if [is notDONE then

15: layer(l]. BP_over_W(CUDA_STREAM)

16: layer[l].BP_over_b(CUDA_STREAM)

17: reduce_q.push(l)

Such an overlapping design allows GPUs to achieve
higher utilization, mitigating the impacts of imbalance of
workloads on different layers and the dependencies
between them. The benefit of such overlaps becomes even
more distinct when we use smaller batch sizes, because the
workload of small-batch training is more unlikely to satu-
rate GPUs and leaves more room for the optimization.

6 IMPLEMENTATION AND EVALUATION

We implement a DLBooster prototype based on the designs
in previous sections, which are summarized as follows:

(1) Using OpenCL [47], we build a prototype of the FPGA
decoder for image processing tasks, where we scale the
Huffman decoding and resizing units to 4 ways and 2 ways
respectively in an Intel Arria 10 GX [11] FPGA device
according to their workloads and hardware constraints.

1809

(2) We put all the decoder logic in a mirror (FPGA IP
core) which can be freely downloaded to FPGA devices.

(3) We optimize each component in DLBooster and
expose simple APIs, with which DLBooster is easily inte-
grated into different DL frameworks with trivial effort
(~220 lines of code for both TensorRT [32] and NVCaffe
[33]) to provide high-performance online data preprocess-
ing services.

(4) We enable the fine-grained scheduling for the BP
workflow in NVCaffe by re-implementing corresponding
APIs (i.e., Net::Backward and Layer: :Backward) for
the training, following the design in Section 5.

Putting all together, we evaluate DLBooster with micro
benchmarks and two typical real-world DL tasks to demon-
strate its potential to speed up DL applications.

6.1 Micro Benchmark

In this section, we evaluate how each design (i.e., data pre-
processing offloading and BP workflow scheduling) of
DLBooster performs through micro benchmarks as follows.

6.1.1 Data Preprocessing

To evaluate the performance (throughput and processing
latency) of DLBooster on image preprocessing,* we conduct
the experiment with the following settings: (1) In the CPU-
based backend, we implement the decoding logic based on
OpenCV [27] and enable 16 Intel Xeon E5 2630-v3 (16 hyper
threads in all) cores to decode at runtime; (2) In nvJPEG, we
dispatch decoding instances onto multiplex CUDA streams
on a NVIDIA Tesla P100 GPU. (3) In DLBooster, we scale
the Huffman decoding and resizing units to 4 ways and 2
ways respectively in an Intel Arria 10 GX [11] FPGA device.
Figs. 5a and 5b present the throughput and latency
results of image decoding respectively. We conclude that:
(1) Compared with the other two baselines, DLBooster
achieves competitive decoding throughput, showing the
potential of offloading decoding workloads to FPGAs. (2)
DLBooster achieves the lowest decoding latency because of
directly fetching data from devices without CPU involved,
while nvJPEG involves twice data moving (disk — host
memory — GPU memory) before decoding, which introdu-
ces the nontrivial latency. This experiment shows the effi-
ciency of DLBooster on image preprocessing with FPGAs.

6.1.2 BP Computational Workflow Scheduling

To evaluate the efficiency of scheduling computational
workloads when training NNs with BP, we conduct this
experiment of training typical NNs (i.e., LeNet-5, ResNet-18
and AlexNet) on 1 P100 GPU. We use NVCaffe as the com-
puting engine and train NNs with synthetic data to avoid
the impacts of data preprocessing. We compare the image
processing throughput when training NNs with different
batch size settings (for different GPU utilization).

As shown in Fig. 6, (1) there are additional 5-15 percent
training performance gains when enabling the scheduling,
showing its effectiveness. (2) The gained training

4. We take data loading (from an NVMe disk), image decoding, and
resizing (to the shape: 224 x224x3) into account, as they are all essential
parts of data preprocessing.

Authorized licensed use limited to: MICROSOFT. Downloaded on May 03,2021 at 03:29:30 UTC from IEEE Xplore. Restrictions apply.

1810

O Without BP optimization O Without BP optimization

140,000 O With BP optimization 3,000 O With BP 1,400

120,000 2,500 1,200
100,000 1,000

2,000
80,000 1500 800
60,000 600
40,000 1,000 400
20,000 D 200
0
64

256 1024 32 128 512 4 16 64
Batch size per GPU Batch size per GPU

(b) AlexNet (c) ResNet-18

O Without BP optimization
O With BP optimization

Images processed
per second
g
8

Images processed
per second
Images processed
per second

°
°

Batch size per GPU

(a) LeNet-5

Fig. 6. Throughput Comparison when training different NNs on NVCaffe
with enabling scheduling optimization and the baseline.

throughput is significant when the batch size is small,
where the GPU is not fully utilized. When the batch size
grows larger, the performance gaps decrease. It's because
the increasing computational workloads of CUDA kernels
can utilize more GPU cores, and the training bottleneck has
been migrated to the GPU hardware. However, our optimi-
zation can still achieve a few performance gains in this case.

6.2 Evaluation on Real-World DL Applications

We use two kinds of end-to-end DL workflows (i.e., local
training (Section 6.2.2) and online inference (Section 6.2.3))
to show the efficiency of DLBooster in accelerating DL
applications.

6.2.1 Experimental Setup

Testbed Configuration. We run the experiments on a GPU
server with: two Intel Xeon E5-2630-v3 CPUs (32 hyper
threads in all), two NVIDIA Tesla P100 GPUs, an FPGA
device (Arria 10 GX [11]) and an NVMe disk (Optane 900p
[49]) both from Intel, a 40 Gbps NIC and 64 GB DDR3
DRAM. As for the software, the programs are built on Cen-
tOS-7 with the latest third-party dependencies, such as NVI-
DIA CUDA-v9.0, NCCL-v2.4, cuDNN-v7.13, etc.

Computing Engines & Data Preprocessing Backends. In
training experiments, we integrate the CPU-based backend,
LMDB and DLBooster with NVCaffe-v0.17.3 [33]. As for
the inference, we use the CPU-based backend, nvJPEG and
DLBooster to offer data preprocessing services in
TensorRT-v4.0 [32]. Each backend is configured with well-
tuned settings.

Models and Datasets. In the experiments, we evaluate
DLBooster with real-world DL applications and datasets,
i.e., LeNet-5 [50] (with MNIST [51]), ResNet-18 [19] and
AlexNet [2] (with ILSVRC2012 [39]) for training, and VGG-
16 [18], ResNet-50 [19] and GoogLeNet [52] for inference,
respectively. MNIST [51] includes 60,000 grayscale images,
and ILSVRC2012 [39] consists of 1.28 million color images.

6.2.2 Local Training Experiment

To demonstrate how DLBooster benefits training DNNs on
GPU clusters, we conduct the experiments of training
LeNet-5, ResNet-18 (with FP16) and AlexNet with different
data preprocessing backends. To better show the contribu-
tion of DLBooster on the end-to-end DL workflows, we only
enable the BP optimization for the NVCaffe with DLBooster.

Throughput. Fig. 7 presents the training throughput com-
parison, in which we find that: (1) DLBooster enables
NVCaffe to approach the training performance roof of GPU
when training different NNs; (2) LMDB allows NVCaffe to
achieve high throughput when training NNs with one GPU.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

However, it degrades the training throughput by 30 percent
when training AlexNet with 2 P100 GPUs (Fig. 7¢), limited
by its poor data caching design. (3) With the optimization of
BP workflow, DLBooster boosts the additional training per-
formance of NVCaffe by up to 14 percent in some cases.
CPU Overhead. Fig. 8 presents the CPU costs of the train-
ing experiment. We conclude that: (1) There are around 1.5
cores consumed by DLBooster when training all three
DNNs, whereas LMDB consumes around 2.5 cores in the
training. (2) The CPU-based backend consumes much more
CPU cores: each GPU requires about 12 cores and 7 cores in
the training of AlexNet and ResNet-18 respectively. This
experiment has shown the potential of DLBooster to save
CPU/GPU cores when training NNs in GPU clusters.

6.2.3 Online Inference Experiment

To demonstrate the potential of DLBooster to boost infer-
ence tasks,” we infer VGG-16, ResNet-50 and GoogLeNet by
TensorRT with different online data preprocessing back-
ends (i.e., CPU-based backend, nvJPEG [24] and DLBooster)
and observe the latency, throughput and CPU costs respec-
tively. We launch 5 TCP clients to send images between two
servers connected by 40Gbps networks to reproduce the
online inference workflow. The images (500 x 375 x 3 on
average) in the JPEG format are randomly selected from
ILSVRC2012.

Latency. For simplicity and fairness, we only focus on the
time costs introduced by data preprocessing and NN infer-
ring. Fig. 10 presents the results of latency comparison.

We find that: (1) TensorRT with DLBooster has the low-
est latency (1.2 ms), compared with the CPU backend
(3.4 ms) and nvJPEG (1.8 ms). (2) As the batch size increases,
the time costs of inference with all three backends signifi-
cantly vary, due to the increasing computational workloads
in TensorRT. (3) The latency in nvJPEG-enabled TensorRT
is low when using a small batch size and becomes much
higher when using a large batch size. This is because both
nvJPEG and TensorRT require a lot of computation resour-
ces, resulting in the competition for GPU cores between
each other.

Throughput and CPU Overhead. Figs. 9 and 11 present the
results of throughput and CPU costs respectively. Similar to
the training experiment, (1) DLBooster achieves the highest
inference throughout and the lowest processing latency,
and Both nvJPEG and the CPU-based backend suffer from
great performance degradation, consuming a lot of CPU/
GPU cores. (2) Compared with DLBooster, nvJPEG allows
TensorRT to achieve only 1/3 image inferring throughput
due to the competition problem mentioned before. (3) By
contrast, the CPU-based backend consumes more than 20
CPU cores to process data at runtime, which is more than
that in the training experiment. This is because: (i) Inferring
NN is much faster than the training. (ii) The decoding effi-
ciency decreases due to runtime overheads when so many
CPU cores run simultaneously, such as context switching,
lock problem, etc. DLBooster not only achieves the highest
image inferring throughput but also runs in an efficient

5. Note that inference only contains the computation in the forward
pass, the BP optimization of DLBooster do not work here

Authorized licensed use limited to: MICROSOFT. Downloaded on May 03,2021 at 03:29:30 UTC from IEEE Xplore. Restrictions apply.

CHENG ETAL.: ACCELERATING END-TO-END DL WORKFLOW WITH CODESIGN OF DATA PREPROCESSING AND SCHEDULING 1811
@x1 pl00 @x2 pl100s Oldeal @x1 p100 @x2 pl100s Oldeal Ox1 pl00 B x2 pl00s O ldeal
240,000 2800

-%D - 180,000 ? ‘%D - 2100 ? ? '%D - izzz I ? ;

o < =) o <€ o <€

g g 120,000 Z ; g g g 1400 g g g g 3000 Z g Z

v 5 v 5 @ & 2000 /

g’ S 60,000 ﬂ 4 ﬂ g ﬂ g E’ S 700 g g .g c’"1000 ﬂ g ﬂ ﬁ ﬂ %
LMDB CPU-based DLBooster LMDB CPU-based DLBooster LMDB CPU-based DLBooster

data preprocessing backends

(a) LeNet-5, batch size = 256 images/GPU

data preprocessing backends
(b) ResNet-18, batch size = 128 images/GPU

data preprocessing backends

(c) AlexNet, batch size = 256 images/GPU

Fig. 7. Throughput of training NNs by NVCaffe with different backends. Each experiment is configured with optimal settings. In DLBooster, the optimi-
zation for BP is enabled for NVCaffe (resulting in higher training performance bound). ResNet18 is trained with FP16.

25
70 [2ume
E 15 =
gw H
z s
N N =N FTEﬂ (]§ =l FTE§ N =N

n.— GPU managing: 0.95 core

transforming: 0.15 core
Parameter updating: 0.12 core

Data preprocessing: 0.3 core

LMDB CPU-based DLBooster
LeNet-5

Batch size=256 images/GPU

LMDB CPU-based DLBooster
ResNet-18

Batch size=128 images/GPU

LMDB CPU-based DLBooster

The statistical CPU costs in detail of
training ResNet-18 with 1 P100 GPU

AlexNet
Batch size = 256 images/GPU

Fig. 8. CPU costs in the training experiment: The left shows the CPU costs when training LeNet-5, ResNet-18 and AlexNet with three typical data pre-
processing backends (LMDB, the CPU-based backend, and DLBooster). The right shows the CPU costs in detail of training ResNet18 with the
DLBooster backend, where around 1.5 CPU cores are consumed in all and 0.3 core is used to process the training data.

2,500 5,200

—&—nvJPEG s NVJPEG 6,000 —o—nVJPEG ‘
= —#—DLBooster = ... 0 =z —+—DLBooster /7 o°
L2000 | TA=URBooster o g 5 3,900 —#—DLBooster o s o CPU-based
@ :-®..CPU-based 77 8 e..CPU-based % 4,500
£ 1,500 d £ --®..CPU-basel £
i 5 2,600 *:;, 3,000
21000 | 2 2
® ® 3 -

3 1,300 31500 | AT
2 500 2 2
0 0 0
1 2 4 8 16 32 1 2 4 8 16 32 64 1 2 4 8 16 32
Batch size (images/GPU) Batch size (images/GPU) Batch size (images/GPU)
(a) VGG-16 (b) ResNet-50 (c) GoogLeNet

Fig. 9. Throughput comparison of inferring VGG-16, ResNet-50, and GooglLeNet on TensorRT with different data preprocessing backends (i.e., the
CPU-based backend, nvJPEG, and DLBooster). FP16 is enabled to speed up the inference of ResNet-50.

—4—nvJPEG

== DLBoOSter
«+@®..CPU-based

Latency (ms)

60 | —e—nvJPEG
—#— DLBooster
++®..CPU-based g +®..CPU-based
z
e
[
ki
1 2 4 8 16 32 1 2 4
Batch size (images/GPU)
(a) VGG-16

Batch size (images/GPU)

(b) ResNet-50

8 16

32 64 1 2 4 8

Batch size (images/GPU)
(c) GoogLeNet

16 32

Fig. 10. Latency comparison of inferring VGG-16, ResNet-50, and GoogLeNet on TensorRT with different data preprocessing backends (i.e., the
CPU-based backend, nvJPEG, and DLBooster). FP16 is enabled to speed up the inference of ResNet-50.

way: it consumes less than 1 CPU core to manage the FPGA
decoder at runtime.

Summary. In this section, we have evaluated DLBooster
on both micro benchmarks and real-world image processing
tasks and datasets. Compared with existing data prepro-
cessing backends, DLBooster can not only improve the
image processing throughput by 1.4x — 2.5x in both train-
ing and inference workflows, but also reduce 1/3 process-
ing latency in online image inferring tasks. Moreover, it can

save as many as 90 percent CPU cores in some cases.
DLBooster shows the potential to speed up DL applications
in the cloud.

7 DISCUSSION AND EXPERIENCE

We have demonstrated the potential of DLBooster to acceler-
ate DL applications in previous sections. In this section, we
analyze the benefits and concerns brought by DLBooster.

Authorized licensed use limited to: MICROSOFT. Downloaded on May 03,2021 at 03:29:30 UTC from IEEE Xplore. Restrictions apply.

1812

w
o

@O CPU-based 77
OnvJPEG
O DLBooster

N
v

N
o

CPU consumption
(# of cores)
R
o v

e}

N

(c) GoogleNet

N

(b) ResNet-50

Nem

(a) VGG-16
The batch size for (a)-(c) are 32,64,32 images/GPU, respectively

o

Fig. 11. CPU cost in the inference experiments.

(1) Programming Flexibility

DLBooster codesigns hardware with software, and the big-
gest concern about DLBooster is the programming flexibility
with FPGAs. However, from our experience, programming
with FPGAs has become easier with the prosperity of FPGA
ecosystems. Particularly, we build the FPGA decoder with
OpenCL [47] in our experiment, which is as flexible as the C
language in terms of programming. Furthermore, (i) we
design DLBooster with open interfaces to simplify the inte-
gration of DLBooster into popular DL frameworks. (ii) The
decoding kernel in the FPGA decoder is pluggable and can
be easily replaced with other decoding kernels. (iii) We are
going to extend DLBooster with more decoding kernels for
different DL applications, such as NLP [3] and speech recog-
nition [42]. We will keep optimizing DLBooster to simplify
its deployment in production.

(2) Economic Benefits

DLBooster optimizes data preprocessing with FPGAs
and benefits both cloud users and cloud service pro-
viders when more DL applications are deployed in the
cloud [4].

To Cloud Users. DLBooster leverages one FPGA device
to provide decoding services with the same performance
as 20 CPU cores. According to our studies, FPGAs are
widely deployed and sold at a low price in the cloud [53],
while CPUs and GPUs are much expensive. For example,
in Azure [26], a physical CPU core (2 hyper threads) sells
for $ 0.11 per hour [26] or brings as much as $ 900 reve-
nue per year.

To Cloud Providers. Today, CPUs, GPUs and FPGAs are
deployed at scale in the cloud, such as Azure. The daily
costs of maintaining such large-scale devices are expensive.
On the one hand, the power consumption of FPGAs (~25W
[11]) is much lower than GPUs (~250W [9]) and CPUs
(~130W [26]). Therefore, migrating some heavy workloads
from CPUs/GPUs to FPGAs can reduce the power con-
sumption. On the other hand, deploying DLBooster at scale
can save a mass of CPU cores, which brings significant reve-
nue to the cloud service providers.

(3) Further Data Path Optimization

Currently, DLBooster involves the HugePage memory in
user space to hold the processed data from the FPGA
decoder, which are then moved to GPUs for use (shown as
Fig. 12). However, such design will also introduce extra
overheads of CPU consumption and processing delay. To
deal with this challenge, our recent work, DUA [53], has
shown the exploration of making data center resources such
as the GPU available to FPGAs. In DLBooster, we can

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

DDR memory CPU

T 2 3 N
| Data storage | \ i GPUspace 1

Data flowing path
on existing design
—_—

Data flowing path
for optimizat_i’on

FPGA Loads raw data
from devices

; ! le bridge + GPU | -
| H ~ H
i | 1 la ~ ' 5 FPGA writes processed
| NIC ! P I, DDR memory|: =, data to host memory
,,,,,,,,,,,,,, i]
; ‘ FPGA I‘ ; 3 CPU moves data to
; I ; =, the GPU memory
| LDRITemoly] 4 FPGA directly writes
', FPGA space ,"‘ —', datato GPU memory

Fig. 12. Further optimizations of data flowing path for DLBooster: FPGA
bypasses CPU and directly writes the processed data to GPU memory.

further extend the FPGA decoder to directly write the proc-
essed data to GPU devices, in which we can further reduce
the overhead of CPU costs and time delay. We will keep
optimizing DLBooster in terms of both FPGA decoder per-
formance and decoding extensions to simplify its deploy-
ment in the cloud.

8 RELATED WORK

Data Preprocessing Designs for DL. Many DL frameworks
have provided their data preprocessing backends to
facilitate DL applications. In general, they can be catego-
rized into two types. The first is offline primitive that pro-
cesses datasets first and reloads them at need, such as
LMDB [20], RecordIO [23], TFRecord [22], etc. The second
is online primitive which burns volumes of CPU/GPU
cores to decode data at runtime. DALI [25] is a hybrid
high-performance data preprocessing backend, which
exploits both GPU-based nvJPEG [24] and CPU cores to
decode images at runtime for DL applications. Other effi-
cient data preprocessing solutions have also been
explored. For example, some researchers [15] split the
dataset into multiple high-speed NVMe disks and load
them in parallel at runtime. Different to their designs,
DLBooster exploits FPGAs to offer satisfying data pre-
processing services in an efficient way.

Computation Workflow Optimization for DL. Many
research works [14], [15], [16], [36], [46] have discussed
how to boost DL applications by fully utilizing hardware
resources. TVM [35] and TC [54] are the end-to-end DL
compilers to generate fused kernels by exploring optimal
scheduling strategies on different hardware backends. In
general, they mainly focus on the inference, while
DLBooster optimizes the BP workflow of training NNs on
GPUs. ByteScheduler [55] and TicTac [56] are two repre-
sentative communication scheduling schemes for the
DML training. In general, they rely on the scheduling of
computation graphs in DML frameworks, which do not
well distinguish the error propagating computation and
gradients computing workloads during the training.
DLBooster implements the fine-grained scheduling to bet-
ter overlap the computation while promising the compu-
tation on the critical path first.

FPGA-Based Acceleration for DL. With the advantages of
low power consumption and ultralow processing latency,
FPGAs have been used to speed up emerging workloads
such as video processing [57], deep learning [28], [58], etc.
In general, many existing FPGA-accelerated DL studies are
about the explorations of FPGAs on accelerating the specific

Authorized licensed use limited to: MICROSOFT. Downloaded on May 03,2021 at 03:29:30 UTC from IEEE Xplore. Restrictions apply.

CHENG ETAL.: ACCELERATING END-TO-END DL WORKFLOW WITH CODESIGN OF DATA PREPROCESSING AND SCHEDULING

computational workloads for fast inference of NNs, such as
CNN [59], [60], LSTM [61], [62], etc. Differently, DLbooster
improves the end-to-end DL workflows by offloading some
key data preprocessing workloads to FPGAs.

9 CONCLUSION

In this work, we first dive into the end-to-end DL work-
flow and show the distinct bottlenecks of data preprocess-
ing. Furthermore, we propose DLBooster, which offloads
some heavy decoding workloads to FPGAs, to improve the
data preprocessing performance in emerging DL applica-
tions. Additionally, we optimize the BP workflow by
rescheduling the computational workloads with the partial
dependency to improve the hardware utilization when
training NNs on GPUs. Our experiments on typical real-
world image processing tasks and datasets demonstrate
that compared with baselines, DLBooster can improve the
image processing throughput by up to 1.4x — 2.5x and
shorten the inference latency by 1/3. In the future, we will
further optimize DLBooster to speed up more DL applica-
tions in the cloud.

ACKNOWLEDGMENTS

The authors would like to appreciate Jiaxin Lin (Beihang Uni-
versity & Microsoft Research), Xi Fan, Xinyi Yu (Shanghai
Jiao Tong University & Microsoft Research), Lei Qu, Ran
Shu, and Peng Cheng (Microsoft Research) for their valuable
contributions to this work. This work was supported in part
by the National Key Research and Development Program of
China under Grant 2018YFB1800500, in part by the Research
and Development Program in Key Areas of Guangdong
Province under Grant 2018B010113001, and in part by the
National Natural Science Foundation of China under Grant
61772305. An earlier version [1] of this work has been pre-
sented as a conference article at the 48th International Confer-
ence on Parallel Processing (ICPP 2019).

REFERENCES

[1] Y. Cheng et al., “DLBooster: Boosting end-to-end deep learning
workflows with offloading data preprocessing pipelines,” in Proc.
48th Int. Conf. Parallel Process., 2019, pp. 1-11.

[2] A. Krizhevsky et al., “ImageNet classification with deep convolu-
tional neural networks,” in Proc. 25th Int. Conf. Neural Inf. Process.
Syst., 2012, pp. 1097-1105.

[3] J. Devlin, M.-W. Chang, Kenton Lee, and K. Toutanova, “BERT:
Pre-training of deep bidirectional transformers for language
understanding,” 2018, arXiv: 1810.04805.

[4] I Nucleus Research, “TensorFlow on AWS,” 2018. [Online]. Avail-
able: https:/ /d1.awsstatic.com/whitepapers /nucleus-tensorflow-
2018.pdf

[5] T.Chenetal., “MXNet: A flexible and efficient machine learning library
for heterogeneous distributed systems,” 2015, arXiv:1512.01274.

[6] A.Paszke et al., “PyTorch: An imperative style, high-performance
deep learning library,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2019, pp. 8026-8037.

[7] M. Abadi et al., “TensorFlow: A system for large-scale machine
learning,” in Proc. 12th USENIX Conf. Operating Syst. Des. Imple-
mentation, 2016, vol. 16, pp. 265-283.

[8] C.Guo etal, “RDMA over commodity ethernet at scale,” in Proc.
ACM SIGCOMM Conf., 2016, pp. 202-215.

[9] Introduction of NVIDIA DGX-2 GPU cluster, Accessed: 2020.
[Online]. Available: https://www.nvidia.com/en-us/data-center
/dgx-2/

[10] G. Cloud, “Al and machine learning platform in Google cloud,”
2019. [Online]. Available: https:/ /cloud.google.com/ai-platform/

1813

[11] Intel, “Intel arria-10 FPGAs,” 2018. [Online]. Available: https://
www.intel.com/content/www /us/en/products/
programmable/fpga/arria-10.html

[12] Mellanox, “An overview ethernet cards in mellanox,” 2019.
[Online]. Available: http://www.mellanox.com/page/ethernet
_cards_overview

[13] B.Yietal., “Towards zero copy dataflows using RDMA,” in Proc.
SIGCOMM Posters Demos, 2017, pp. 28-30.

[14] T. Akiba, S. Suzuki, and K. Fukuda, “Extremely large minibatch
SGD: Training ResNet-50 on ImageNet in 15 minutes,” 2017,
arXiv: 1711.04325.

[15] P. Goyal et al., “Accurate, large minibatch SGD: Training Image-
Net in 1 hour,” 2017, arXiv: 1706.02677.

[16] Y. You et al., “ImageNet training in minutes,” in Proc. 47th Int.
Conf. Parallel Process., 2018, pp. 1-10.

[17] M. Cho, U. Finkler, S. Kumar, D. Kung, V. Saxena, and D. Sreed-
har, “PowerAl DDL,” 2017, arXiv: 1708.02188.

[18] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” 2014, arXiv:1409.1556.

[19] K. He, X. Zhang, S. Ren, and]. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,”
in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1026-1034.

[20] F. Zou, “Creating ImageNet LMDB in Caffe,” Accessed: 2020.
[Online]. Available: https://github.com/intel/caffe/wiki/How-
to-create-Imagenet-LMDB

[21] Y. Jia et al., “Caffe: Convolutional architecture for fast feature
embedding,” in Proc. 22nd ACM Int. Conf. Multimedia, 2014,
pp. 675-678.

[22] M. Daoust et al., “Introduction to TFRecords,” Accessed: 2020.
[Online]. Available: https:/ /www.tensorflow.org/tutorials/load
data/tf-records

[23] A. Acharya et al., “Image transforms and recordio file creation of
MXNet,” 2018. [Online]. Available: https://cwiki.apache.org/
confluence/display /MXNET /Image+Transforms+and+RecordIO
+file+Creation, 2018.

[24] nv]JPEG: GPU-accelerated JPEG decoder, Accessed: 2020. [Online].
Available: https:/ /developer.nvidia.com/nvjpeg

[25] NVIDIA DALI and NVIDIA nvJPEG, Accessed: 2020. [Online].
Available: https:/ /news.developer.nvidia.com/announcing-nvidia-
dali-and-nvidia-nvjpeg

[26] D. Firestone et al., “Azure accelerated networking: SmartNICs in
the public cloud,” in Proc. 15th USENIX Conf. Netw. Syst. Des.
Implementation, 2018, pp. 51-64.

[27] Introduction to OpenCV, Accessed: 2020. [Online]. Available:
https://opencv.org/

[28] E. Chung et al., “Serving DNNs in real time at datacenter scale
with project brainwave,” IEEE Micro, vol. 38, no. 2, pp. 8-20,
Mar./Apr. 2018.

[29] M. Feldman, “Microsoft goes all in for FPGAs to build out ai
cloud,” TOP500 supercomputer sites. 2017. [Online]. Available:
https://www. top500. org/

[30] D. Pellerin, “FPGA accelerated computing using AWS F1
instances,” AWS Public Sector Summit, 2017.

[31] G. Leopold, “Intel, Facebook accelerate datacenters with FPGAs,”
Accessed: 2020. [Online]. Available: https://www.enterpriseai.
news/2016/03/23/intel-facebook-accelerate-datacenters-fpgas /

[32] NVIDIA, “NVIDIA tensorrt programmable inference accelerator,”
2018. [Online]. Available: https://developer.nvidia.com/tensorrt

[33] NVCaffe, Accessed: 2020. [Online]. Available: https://www.
nvidia.com/en-us/data-center/gpu-accelerated-applications/
caffe/

[34] Introduction to CUDA toolkit, Accessed: 2020. [Online]. Avail-
able: https:/ /developer.nvidia.com/cuda-toolkit

[35] T. Chen et al., “TVM: An automated end-to-end optimizing com-
piler for deep learning,” in Proc. 13th USENIX Conf. Operating
Syst. Des. Implementation, 2018, pp. 578-594.

[36] A. O. Ashari, “On optimizing machine learning workloads via
kernel fusion,” ACM SIGPLAN, vol. 50, no. 8, pp. 173-182, 2015.

[37] Introduction to CUDA stream, 2020. [Online]. Available: https://
docs.nvidia.com/cuda/cuda-runtime-api/
group_ CUDART__ STREAM.html

[38] Y. LeCun et al., “Deep learning,” Nature, vol. 521, no. 7553,
pp- 436-444, 2015.

[39] O. Russakovsky et al., “ImageNet large scale visual recognition
challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, 2015.

[40]].F. Gemmeke ef al., “Audio set: An ontology and human-labeled
dataset for audio events,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process., 2017, pp. 776-780.

Authorized licensed use limited to: MICROSOFT. Downloaded on May 03,2021 at 03:29:30 UTC from IEEE Xplore. Restrictions apply.

https://d1.awsstatic.com/whitepapers/nucleus-tensorflow-2018.pdf
https://d1.awsstatic.com/whitepapers/nucleus-tensorflow-2018.pdf
https://www.nvidia.com/en-us/data-center/dgx-2/
https://www.nvidia.com/en-us/data-center/dgx-2/
https://cloud.google.com/ai-platform/
https://www.intel.com/content/www/us/en/products/programmable/fpga/arria-10.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/arria-10.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/arria-10.html
http://www.mellanox.com/page/ethernet_cards_overview
http://www.mellanox.com/page/ethernet_cards_overview
https://github.com/intel/caffe/wiki/How-to-create-Imagenet-LMDB
https://github.com/intel/caffe/wiki/How-to-create-Imagenet-LMDB
https://www.tensorflow.org/tutorials/load_data/tf-records
https://www.tensorflow.org/tutorials/load_data/tf-records
https://cwiki.apache.org/confluence/display/MXNET/Image+Transforms+and+RecordIO+file+Creation, 2018.
https://cwiki.apache.org/confluence/display/MXNET/Image+Transforms+and+RecordIO+file+Creation, 2018.
https://cwiki.apache.org/confluence/display/MXNET/Image+Transforms+and+RecordIO+file+Creation, 2018.
https://developer.nvidia.com/nvjpeg
https://news.developer.nvidia.com/announcing-nvidia-dali-and-nvidia-nvjpeg
https://news.developer.nvidia.com/announcing-nvidia-dali-and-nvidia-nvjpeg
https://opencv.org/
https://www. top500. org/
https://www.enterpriseai.news/2016/03/23/intel-facebook-accelerate-datacenters-fpgas/
https://www.enterpriseai.news/2016/03/23/intel-facebook-accelerate-datacenters-fpgas/
https://developer.nvidia.com/tensorrt
https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/caffe/
https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/caffe/
https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/caffe/
https://developer.nvidia.com/cuda-toolkit
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html

1814

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman,
“Reading text in the wild with convolutional neural networks,”
Int.]. Comput. Vis., vol. 116, no. 1, pp. 1-20, 2016.

L. Deng et al., “Recent advances in deep learning for speech
research at Microsoft,” in Proc. IEEE Int. Conf. Acoust. Speech Signal
Process., 2013, vol. 26, pp. 8604-8608.

L. Bottou et al., “Large-scale machine learning with stochastic gra-
dient descent,” in Proc. COMPSTAT, 2010, pp. 177-186.

Q. Ho et al., “More effective distributed ML via a stale synchro-
nous parallel parameter server,” in Proc. 26th Int. Conf. Neural Inf.
Process. Syst., 2013, pp. 1223-1231.

Introduction to cuDNN, Accessed: 2020. [Online]. Available:
https:/ /developer.nvidia.com/cudnn

S. Rajbhandari ef al., “Optimizing CNNs on multicores for scal-
ability, performance and goodput,” ACM SIGARCH Comput.
Archit. News, vol. 45, no. 1, pp. 267-280, 2017.

J. E. Stone et al., “OpenCL: A parallel programming standard for
heterogeneous computing systems,” Comput. Sci. Eng., vol. 12,
no. 3, pp. 66-73, 2010.

Huge page support in linux kernel, Accessed: 2020. [Online].
Available: https://www.kernel.org/doc/Documentation/vm/
hugetlbpage.txt

Intel optane SSD 900p series, Accessed: 2020. [Online]. Available:
https:/ /www.intel.com/content/www /us/en/products/
memory-storage/solid-state-drives /gaming-enthusiast-ssds/
optane-900p-series.html

Y. LeCun et al., “Comparison of learning algorithms for handwrit-
ten digit recognition,” in Proc. Int. Conf. Artif. Neural Netw., 1995,
vol. 60, pp. 53-60.

Y. LeCun et al., “The MNIST database of handwritten digits,”
Accessed: 2020. [Online]. Available: http://yann.lecun.com/
exdb/mnist/

C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1-9.

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

R. Shu et al., “Direct universal access: Making data center resour-
ces available to FPGA,” in Proc. 16th USENIX Conf. Netw. Syst.
Des. Implementation, 2019, pp. 127-140.

N. Vasilache et al., “Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions,” 2018, arXiv:
1802.04730.

Y. Peng et al., “A generic communication scheduler for distributed
DNN training acceleration,” in Proc. 27th ACM Symp. Operating
Syst. Princ., 2019, pp. 16-29.

S. H. Hashemi, S. A. Jyothi, and R. H. Campbell, “TicTac: Acceler-
ating distributed deep learning with communication scheduling,”
2018, arXiv: 1803.03288.

S. Wang et al., “Live video analytics with FPGA-based smart cam-
eras,” in Proc. Workshop Hot Topics Video Analytics Intell. Edges,
2019, pp. 9-14.

K. Ovtcharov et al., “Accelerating deep convolutional neural net-
works using specialized hardware,” Microsoft Res. WhitePaper,
vol. 2, no. 11, pp. 1-4, 2015.

C. Zhang et al.,, “Energy-efficient CNN implementation on a
deeply pipelined FPGA cluster,” in Proc. Int. Symp. Low Power
Electron. Des., 2016, pp. 326-331.

C. Zhang et al., “Optimizing FPGA-based accelerator design for
deep convolutional neural networks,” in Proc. ACM/SIGDA Int.
Symp. Field-Programmable Gate Arrays, 2015, pp. 161-170.

S. Cao et al., “Efficient and effective sparse LSTM on FPGA with
bank-balanced sparsity,” in Proc. ACM/SIGDA Int. Symp. Field-
Programmable Gate Arrays, 2019, pp. 63-72.

S. Han ef al., “ESE: Efficient speech recognition engine with sparse
LSTM on FPGA,” in Proc. ACM/SIGDA Int. Symp. Field-Program-
mable Gate Arrays, 2017, pp. 75-84.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: MICROSOFT. Downloaded on May 03,2021 at 03:29:30 UTC from IEEE Xplore. Restrictions apply.

https://developer.nvidia.com/cudnn
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

