
FlowShader: a Generalized Framework for
GPU-accelerated VNF Flow Processing

Xiaodong Yi∗, Junjie Wang∗, Jingpu Duan†, Wei Bai‡, Chuan Wu∗, Yongqiang Xiong‡, Dongsu Han§
∗The University of Hong Kong,†Southern University of Science and Technology

Email: ∗{xdyi, jjwang2,cwu}@cs.hku.hk,†duanjp@sustc.edu.cn
‡Microsoft Research,§Korea Advanced Institute of Science and Technology

Email: ‡wei.bai@microsoft.com,‡yongqiang.xiong@microsoft.com,§dongsu.han@gmail.com

Abstract—GPU acceleration has been widely investigated for
packet processing in virtual network functions (NFs), but not for
L7 flow-processing NFs. In L7 NFs, reassembled TCP messages of
the same flow should be processed in order in the same processing
thread, and the uneven sizes among flows pose a major challenge
for full realization of GPU’s parallel computation power.

To exploit GPUs for L7 NF processing, this paper presents
FlowShader, a GPU acceleration framework to achieve both
high generality and throughput even under skewed flow size
distributions. We carefully design an efficient scheduling algo-
rithm that fully exploits available GPU and CPU capacities; in
particular, we dispatch large flows which seriously break up the
size balance to CPU and the rest of flows to GPU. Furthermore,
FlowShader allows similar NF logic (as CPU-based NFs) to run
on individual threads in a GPU, which is more generalized and
easy to take on as compared to redesigning an NF for operation
parallelism on GPU. We implemented a number of L7 flow
processing NFs based on FlowShader. Evaluations are conducted
under both synthetic and real-world traffic traces and results
show that the throughput achieved by FlowShader is up to 6x
that of the CPU-only baseline and 3x of the GPU-only design.

I. INTRODUCTION

Virtual network functions (VNFs) have been advocated for

processing network traffic in many domains (e.g., telecom’s

networks, the WAN) [1], [2], due to their deployment agility

and low management costs. Many NFs deployed over the

WAN perform L7 flow-processing , such as stream-processing

Intrusion Detection/Prevention System (IDS/IPS) [3]–[6], L7

load balancer [7], stateful firewall [8]–[10], Web Security

Gateway (WSG) [11], [12], and Web Application Firewall

(WAF) [13], [14]. With these NFs, messages of the same flow

must be processed in order, to guarantee the correctness of

the processing logic; after processing each message, states

associated with the flow may be updated, in which case

the change must be reflected before subsequent messages

are processed. For example, after a state machine-based IDS

analyzes one message in a flow, a state is updated and the

new state must be used when processing the next message in

this flow. Similarly, a WAF may record the frequency of each

This work was supported in part by MSRA Collaborative Research Grant,
grants from Hong Kong RGC under the contracts HKU 17204715, 17225516,
C7036-15G (CRF), and the project “PCL Future Regional Network Facilities
for Large-scale Experiments and Applications (PCL2018KP001)”.

keyword in a flow, which must be updated after processing

each message.

To enhance the VNF throughput, advanced, general-purpose

hardware devices have been exploited, such as FPGA [15]

and GPU [16]. In this paper, we focus on GPU acceleration

because GPUs are more widely available [17]–[19] and easier

to program (more similar to CPU programming) than FPGAs.

With thousands of parallel processing units, GPUs are well

known for high computation capacity and have been shown to

significantly improve packet processing speeds as compared to

using CPUs [16], [20]–[23].

We propose FlowShader, a GPU acceleration framework for

L7 VNFs that maximizes flow processing throughput by fully

exploiting available GPU and CPU capacities. FlowShader
makes the following design choices which combined represent

a unique solution in the design space of hardware-accelerated

VNFs.

We use GPU to accelerate L7 flow-processing NFs for WAN
traffic. Most existing work studies GPU acceleration of packet-

processing, stateless NFs, where packets can be processed

in any order and no flow states are maintained [16], [20],

[21]. L7 NFs pose important additional requirements on GPU-

accelerated NF design: 1) the processing unit for most L7 NFs

is reassembled message rather than an individual packet; 2)

in each batch of messages to be fed into a GPU for parallel

processing, messages belonging to the same flow must be sent

to the same GPU thread(s) for serial processing; and 3) a new

GPU kernel for processing a flow can only be launched after a

previous kernel on the same flow is completed and flow states

are updated.

We pursue a general, flow-parallel acceleration framework.
Existing work on GPU-accelerated flow processing (e.g.,

SSLShader [22]) mostly adopts a strong scaling approach.

They design a specific GPU parallel execution algorithm to

achieve operation-level parallelism within the NF logic and use

multiple GPU threads to run different parallel operations for

processing one flow. Adopting such a strong scaling approach

lays a high customization requirement for migrating NFs from

CPU to GPU, as careful redesign of the code for operation

parallelism is necessary for each NF. Instead, we advocate flow-

level parallelism in which similar NF logic (as that running on

a CPU) is executed on the GPU, and each GPU thread runs

the entire processing logic of an NF to sequentially process978-1-7281-2700-2/19/$31.00 2019 © IEEE



messages within a flow. This weak scaling approach makes it

much easier to migrate various existing NFs to GPUs.

� FlowShader provides a generalized acceleration architec-

ture for L7 flow-processing NFs. With flow-level parallelism

on GPUs, developers do not need to redesign custom GPU-side

NF logic for different NFs, but can directly port any CPU-side

NF processing logic to the GPU side with minor modifications.

� A set of APIs are provided to further ease the job of

developers on NF implementation, enabling a clear separation

of architecture design and NF implementation. Using the APIs,

developers only need to implement the core processing logic

of the NFs, without handling when and where the NFs should

be invoked in the system.

We resolve the flow data size imbalance issue to maximize
GPU efficiency. An important issue may result due to flow-

level parallelism. Specifically, the size of messages belonging

to different flows in the same batch, to be processed by

different GPU threads, can be significantly unbalanced. This

can significantly undermine the parallel processing power of

a GPU. This issue has not been posed and not resolved in

existing studies (e.g., GASPP [23]).

� The core of FlowShader is a carefully designed flow

scheduling algorithm to maximally utilize available capacities

of CPUs and GPUs for throughput maximization. It efficiently

dispatches flows of different data sizes to different CPU cores

and the GPU in real time, based on detailed system modeling

and periodical processing time prediction. The idea is to

dispatch large flows which seriously break up the size balance

to CPU and the rest of flows to GPU, in order to maximize

GPU parallelism and minimize CPU waiting time.

In summary, FlowShader is developer friendly and ensures

high flow-processing performance. We implemented a number

of L7 NFs based on FlowShader: an IDS, a L7 load balancer,

a WSG and a WAF. Evaluation results using both synthetic

and real-world traffic traces show that FlowShader achieves

up to 6x throughput as compared to the CPU-only baseline,

3x to the GPU-only solution, and 2.3x to approaches adopting

fixed-ratio flow partition between CPU and GPU. The message

processing latency incurred with FlowShader is acceptable,

and much smaller than a GPU-only approach.

II. MOTIVATION AND CHALLENGE

A. GPU Background

There are several types of GPUs by different providers such

as NVIDIA [24], AMD [25] and Intel [26]. We use NVIDIA’s

discrete GPUs [27] given their popularity in the market. In

NVIDIA’s representative Pascal architecture [28], a GPU has

several graphics processing clusters which consist of multiple

streaming multiprocessors (SMs). Each SM has multiple stream

processors (SPs); each SP can run a GPU thread (also called a

CUDA core). The basic execution unit of an SM is a warp, a

group of 32 threads with Single Instruction Multiple Threads

(SIMT) architecture. The processing time of one warp depends

on the slowest thread in the warp. A kernel is a program that

can be concurrently run on multiple GPU threads. For example,

a NVIDIA Tesla P100 GPU has 6 graphics processing clusters,

56 SMs, 64 SPs, and 2 warp schedulers in each SM.

Compared with a CPU, one GPU’s overall computation

power is much stronger because of its thousands of cores.

However, a single CPU core is much more powerful than a

single GPU core. Batching is widely adopted when running

GPU programs: the CPU gathers data into a batch and copies

the batch to GPU’s memory; after the GPU has processed the

data, the CPU copies the data back to its memory.

B. Flow Processing versus Packet Processing

In flow-based NFs (such as the stream snort [29], an L7

load balancer or WAF), the basic processing unit is TCP

session (namely, flow) between clients and servers, instead

of packets. In such NFs, network packets in the same flow

are first processed by TCP stack, and further reassembled

into SSL/HTTP messages (representing application level re-

quests from clients or response from the server), using high-

performance pre-processors such as Linux’s TCP stack (mTCP

[30] or F-Stack [31]), OpenSSL, Apache/Nginx, etc.; the NF

core only processes the reassembled messages.

In GPU-accelerated NF architectures for packet-processing

[16], [32], there are no per-flow states and their management;

packets can be fed into a GPU in any order and processed

by different GPU threads. Moreover, most of these NFs only

process packet headers rather than whole packets. For example,

an IPv4 router checks destination IP address in IP header,

and a packet-based firewall processes the five tuples [33]. The

processing time of each packet does not depend much on the

packet size.

A straightforward extension of existing architectures to flow

processing is to batch messages for GPU processing, however,

the message size may vary significantly. In this paper, we refer

to a flow as a large flow or a small flow according to this data

size of the flow in the current batch. L7 NFs typically need to

process the entire content in the messages, e.g., a WAF checks

the entire message to see whether it violates the predefined

rules. Therefore, processing time of different flows by their

respective GPU threads may differ significantly. Especially,

GPU processing time of each batch is largely decided by the

largest flow in the batch; most other GPU threads would have

finished processing and wait for the thread processing this

largest flow, resulting in severe underutilization of many GPU

threads.

We show how flow data size imbalance affects GPU

processing throughput, by implementing a few flow-processing

NFs using a GPU acceleration design as in GPUNFV [34].

There are 2000 flows going through each NF, and the batch

contains 1000 messages (the optimal batch size maximizing

the NFs’ throughput based on our tests). We vary the ratio
of the data size of the largest flow over the average data size

of all flows in each batch. The average results are shown in

Fig. 1. The throughput drops significantly with the increase of

the skewness ratio.

Therefore, imbalance of message size is an important

challenge in exploiting GPU for flow processing.

2



Figure 1: Throughput at diff. flow data size imbalance levels

Figure 2: FlowShader dispatches large flows to CPU to address

the flow size imbalance. Our flow scheduling algorithm tries

to find an optimal partition to minimize max(Time2,Time3)

C. Design Rationale

We pursue a general GPU acceleration framework for reverse-

proxy style of NF flow processing, achieving high throughput.

First, we adopt weak scaling to run one GPU thread to

process one flow using the entire NF processing logic (Sec. III).

We further provide a set of APIs for both CPU and GPU

programming of an NF, for developers to implement core

processing logic and specify flow states (Sec. V). Existing

GPU acceleration architectures such as SSLShader [22] utilize

strong scaling on a GPU, e.g., using multiple GPU threads

to replace a for loop in CPU-based implementation. Such

design can fully utilize parallel computation power of a GPU;

however, the NF processing logic needs to be redesigned for

each individual NF, and only computation intensive NFs benefit

most. With our weak scaling approach, any flow-processing

NF can benefit from GPU parallel processing regardless of

whether it is computation intensive or merely carries out simple

processing of small messages.

Second, to handle flow size imbalance, FlowShader exploits

available capacities of CPU cores for flow processing, in

addition to GPU processing. As shown in Fig. 2, our key

idea is to dispatch large flows which seriously break up the

flow size balance to CPU and the rest of flows to GPU. In

this way, we can fully utilize the high computation power

of a CPU core, efficient parallelism among GPU cores and

otherwise-idling time of a CPU thread. To this end, we need

to design an efficient flow scheduling algorithm among GPU

and CPU cores for throughput maximization.

A well-known downside of using GPU is its additional

latency due to the need of batching and copying messages

between CPU and GPU memory. We target L7 NFs for WAN

flow processing such as WSG and WAF, and the latency

introduced by batching and GPU memory copy is much smaller

as compared to the end-to-end delay experience by flows.

III. FlowShader DESIGN

A. Architecture

We focus on NF processing in the reverse-proxy manner,

(as in SSLShader [22]) and widely adopted in real-world L7

NFs (e.g., L7 load balancer, WSG, WAF); connections from

the clients are terminated at the NF and re-established with the

servers after NF processing is done. FlowShader is built on top

of a TCP/IP stack to get the reassembled messages. We consider

the representative system architecture [16], [22] that consists

of multiple CPU cores and one GPU. We will discuss the

extension to multiple GPUs in Sec. VII. FlowShader creates a

thread for each CPU core. We set the thread affinity to reduce

the overhead of cache misses. With Receiver Side Scaling

(RSS), FlowShader guarantees that packets from a connection

is always processed by a specific CPU core.

As shown in Fig. 3, each CPU thread of FlowShader has

4 major functional modules: flow manager, flow operator,

batch manager and flow scheduler (inside batch manager).

The processing logic of each thread can be divided into the

following four steps.

Buffering: The flow manager keeps polling reassembled

messages from the TCP/IP stack and stores the messages to

the corresponding flow operators. A flow operator is uniquely

identified by five-tuple. It has a per-flow message queue and a

state storage. It is created when a new connection is established

and destroyed when the connection is terminated.

Dispatching: The batch manager only processes messages

when the number of unprocessed messages in message queues

of all flow operators reaches a threshold or a timer times out.

We use two thresholds, the unprocessed message threshold and

the timeout threshold, to provide consistent good performance

in various scenarios. With the unprocessed message threshold,

we can batch many messages for GPU to process at each time,

thus fully utilizing the GPU’s computation power. This ensures

high throughput at high traffic loads. However, at low loads,

the unprocessed message threshold may cause large latency.

To address this, we introduce the timeout threshold to bound

the maximum batching time.

The batch manager invokes the flow scheduler to dispatch

the unprocessed messages to the pinned CPU core and shared

GPU card for processing. To guarantee processing consistency

and accuracy, all the messages of a flow must be processed on

the same CPU or GPU thread according to the arrival order.

We develop a flow scheduling algorithm to resolve flow data

size imbalance issue (more details in Sec. IV).

Processing: FlowShader uses both CPU and GPU to process

messages. For messages dispatched to GPU, we copy them into

a message batch and their flow states into a state batch (Fig. 4).

Then the batch manager copies message batch and state batch

into GPU’s memory and launches the corresponding GPU NF

kernel to process these messages (more details in Sec. III-C).

The total number of launched GPU threads equals the number

of flows included in the message batch.

3



Figure 3: Architecture of FlowShader
For messages dispatched to CPU, the batch manager directly

calls the corresponding CPU NF function to process them.

Unlike GPU, the CPU NF function directly fetches messages

and flow states from flow operators without the extra data copy.

Post Processing: After GPU processes the messages, the batch
manager fetches processed messages and state updates from

the GPU’s device memory, updates the states in corresponding

flow operators, and then forwards processed messages to the

flow manager. Messages processed by CPU are directly sent

back to the flow manager. The flow manager forwards these

messages out of the system (e.g., drop or send to a backend

server).

B. Dynamic Threshold Adjustment

The batch manager uses two thresholds, unprocessed mes-

sage threshold and timeout threshold, to invoke message

dispatching and processing. How to set the two thresholds

is crucial. The timeout threshold can be set according to users’

latency requirement. For example, Google observes that 100 to

400 ms latency slowdown reduces the number of searches by

0.2% to 0.6% [35]. Hence, we recommend to set the timeout

threshold no larger than 100ms.

For the unprocessed message threshold, FlowShader adopts

a dynamic adjustment strategy to find an approximately optimal

threshold. We start with a relatively small threshold (e.g., 32

in the evaluation) and set the current threshold adjustment

direction to plus. We periodically collect the overall flow

processing throughput and define the throughput variation r =
Throughputcurr−Throughputprev

Throughputprev
.

We use a constant value r thresh to control the adjustment

direction. r thresh is a positive number. If r > r thresh, it

means that we receive a positive feedback in current adjustment

direction. Hence, the threshold will be changed in the current

direction with a step size. If r < −r thresh, it means that

we receive a negative feedback. Hence, the direction will be

set to the opposite (plus becomes minus, or minus becomes

plus) and the threshold will be changed in the new direction

with a step size. Otherwise, we keep the threshold unchanged.

We note that a too large r thresh is insensitive to detect the

throughput feedback; a too small r thresh is too sensitive to

Figure 4: Structure of message batch and state batch

system noises, resulting in direction oscillations. We choose

r thresh to 0.5% in our evaluation and find it works well.

We set step size to 32, which is the GPU warp size.

C. Batch Design
Fig. 4 gives an illustration of the batch. The message batch is

a two-dimensional array, where the size of the first dimension

is the number of flows, and the size of the second dimension is

the maximum number of messages in a flow in the batch. An

unprocessed message is copied to the corresponding position

(m,n) in the two-dimensional array, where m is the flow index

and n is the message index inside the flow. The state batch is

a one-dimensional array and each object in the array contains

one or several states of the respective flow.
We launch GPU threads such that all the messages in flow

m are processed by GPU thread m. In this way, the GPU

threads can easily fetch messages and states from the message

and state batches according to thread IDs. We refer to the total

number of messages in the message batch as the message batch
size in this paper. The message batch size is no larger than the

unprocessed message threshold.

D. Overlapping GPU and CPU Processing
To overlap GPU and CPU processing, we use asynchronous

cudaMemcpyAsync to transfer data to GPU, launch kernel

function, and then use it to transfer results back to host

memory. The function returns immediately without waiting for

corresponding GPU operations’ completion. Indeed, we just

issue three operation requests on GPU. After that, we run NF

functions on CPU to process messages. At this moment, both

GPU and CPU are processing messages. After CPU processing

completes, we check whether GPU has finished all operations.

If not, we can let CPU polls the new arrival messages instead

of staying idle.

E. Kernel Fusion for NF Chain
In most of existing GPU accelerated NF solutions [16],

[21], [36], each NF is implemented as a separate GPU kernel

function. Hence, to traverse a NF chain, they may launch

GPU kernel functions for multiple times. This causes high

kernel launch delay and data transfer overhead. To address

this problem, we adopt kernel fusion technique [37]. Kernel

fusion merges multiple consecutively executed small kernels

into a large kernel function. In FlowShader, we implement the

processing logic of a NF service chain in a single GPU kernel

function.

4



IV. FLOW SCHEDULING

A. Rationale

The goal of flow scheduling is to resolve the imbalance

flow data size within GPU. There exist some GPU/CPU load

balancing algorithms in previous studies, but they focus on

different purposes, so they cannot be utilized in our scenario:

(1) Dispatch workload to GPU only when CPU is overloaded,

such as opportunistic offloading in SSLShader [22] and

dynamic offloading in Kargus [38]. To fully exploit expensive

GPUs, FlowShader adopts GPU for flow processing as the first

choice, and only uses the CPU core only if it has spare capacity

(normally, it is responsible for fetching messages from TCP

stack, and becomes idle when waiting for GPU processing),

to assist in processing large flows.

(2) Allocate packets for CPU or GPU processing according

to optimally tuned portions in all packets, or task queue sizes

maintained for each device [32] [39] [40]. Such approaches

are feasible where packet order is not distinguished, but not

suitable for flow allocation where flow sizes may vary, and

large and small flows have their respective ideal devices for

processing. In addition, we retain processing time balance

among GPU threads and CPU threads, by carefully allocating

flows to individual threads, while existing approaches do not

consider fine-grained inefficiency within each device.

B. Model

To design a good strategy for dividing flows between

GPU and CPU threads, we segment CPU-side and GPU-side

processing time in detail. In each round, the GPU time is

mainly due to memory copy (for copying message batch and

state batch between the CPU memory and the GPU memory),

and parallel flow processing with GPU threads. Fig. 5 shows

our measurements of GPU processing completion time and

memory copy time (per-batch average) when the number of

flows in each message batch varies, where we send flows

consisting of the same HTTP requests of 128 bytes each to an

NF running on a NVIDIA Tesla P100 GPU. We observe that

the memory copy time increases linearly with the concurrent

flow number. Since the message rate of the flows is the same,

a larger concurrent flow number indicates larger size of the

message batch. We have Tcopy = k1 × Sg + b1, where Sg is

total size of the message batch copied to GPU, and k1 and b1
depend on the NF (if message size of flows passing through

each NF differs).

For GPU processing time, we see a staircase curve: when the

concurrent flow number is in a certain range, the completion

time varies little. As we know, each SM in the GPU can run

one thread block at each time [28]. The total number of thread

blocks used by one CPU thread in a GPU is decided by the

total number of GPU threads it runs on the GPU (equivalent

to the number of flows sent to the GPU), Nflows, and the

number of GPU threads in one thread block, Nblock (e.g., 64

as we set when launching a kernel in our evaluation). We can

approximately calculate the number of thread blocks to be

processed by one SM (sequentially), if the CPU thread uses all

Nsm SMs in the GPU, as R = �(Nflows/Nblock)/Nsm�.When

different numbers of flows are sent to the GPU, if they lead

to the same R value, we know that roughly the same number

of thread blocks are processed by each SM, and hence similar

GPU processing completion time results.

Fig. 6 further shows GPU processing completion time,

when the size of individual messages in the flows varies. The

processing time increases roughly proportionally to the increase

of message size.

Therefore, we model GPU’s flow processing time as

Tgprocess = k2 ×R×M , where M is the total data size of the

largest flow in the message batch, and k2 differs according to

different NFs running on the GPU and how many CPU threads

share the GPU concurrently. When the GPU is shared by

multiple CPU threads, by default the SMs are evenly allocated

to the CPU threads, and hence the relation Tg process ∝ R still

holds, just with a different k2.

The total GPU time, TGPU , is:

TGPU = Tg process + 2Tcopy (1)

= k2 �(Nflows/Nblock)/Nsm�M + 2k1Sg + 2b1.

Here, factor 2 is due to copying message and state batches

from the CPU memory to the GPU memory and then back

after GPU has finished processing.
In each round, the CPU time mainly consists of three parts:

message receiving time Treceive, batching time Tbatch, and
flow processing time Tc process. Based on our experiments,
Treceive is linear with the unprocessed message threshold (m),
Tbatch is linear with the size of the message batch for GPU
processing (Sg), and Tc process is linear with the overall data
size of all flows that the CPU thread processes (Sc). Therefore,
the total CPU time, TCPU , is:

TCPU = Treceive + Tbatch + Tc process (2)

= k3m+ k4Sg + k5Sc + b2.

In each CPU thread, the flow scheduler allocates received
flows to be processed by this CPU thread and the GPU,
respectively, such that the processing completion time in each
batching round, Ttotal = max{TCPU , TGPU}, is minimized.
To formulate this problem, let binary variable xi represent
which device the ith flow is allocated to: xi = 0 if it is
allocated to the CPU and xi = 1 if allocated to GPU. Let
sizei denote the message size of the ith flow. We can formulate
an 0-1 integer linear program(ILP):

min
x

max {TGPU , TCPU}

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

TCPU = k3m+ k4
m∑
i=1

(xi ∗ sizei) + k5
m∑
i=1

((1− xi)sizei) + b2

TGPU = k2

⌈
((

m∑
i=1

xi)/(Nblock))/Nsm

⌉
∗ max

i∈[1,m]
{sizei ∗ xi}

+2k1
m∑
i=1

(xi ∗ sizei) + 2b1

xi ∈ {0, 1} ∀ i = 1, 2, ...,m.

As we know, ILP is proved to be NP complete as some

known NP complete problems such as 3-SAT and vector cover

problem can be reduced to ILP [41], [42]. Although some

special cases of ILP can be solved in polynomial time [42],

5



Figure 5: GPU memory copy time and processing time

Figure 6: GPU processing time with diff. message sizes

[43], it is difficult to verify whether a specific ILP instance

can be solved in polynomial time.

C. Flow Scheduling Algorithm

We propose a heuristic algorithm to solve the problem in

a short time. Our flow scheduling algorithm (Alg. 1) takes

as input an array A[], containing overall data sizes of the

flows in ascending order. For example, A[] = [3, 4, 4, 4, 5] for

the example in Fig. 4 (assuming each message’s size is 1).

The algorithm returns a partition index i in array A[], such

that all flows in the index range of [0, i] are sent to GPU for

processing, and all flows in index range [i + 1, Nflows − 1]
are processed by the CPU core, where Nflows is the total

number of flows in the current batch. The algorithm goes by

repeatedly partitioning the flows to two sets corresponding

to indices [0, i − 1] and [i, Nflows − 1] in A[], starting from

i = Nflows − 1, and compute Ttotal with the partitions. We

decrement i by 1 each time, as long as Ttotal computed with

the obtained partition is decreasing, and stop at an i when its

Ttotal is no smaller than that at i+ 1.

We can easily see that the time complexity of the algorithm
is O(Nflows logNflows) (due to flow sorting). We know that
TCPU is monotonically decreasing on i and TGPU is non-
decreasing with i. Hence, with the decrease of i starting from
Nflows − 1, Ttotal is non-increasing at first and then increases.
So there is no need for the algorithm to traverse the entire list
A[]; it can stop when Ttotal is not longer decreasing. Since the
number of flows processed by GPU should always be much
larger than the number of flows processed by a CPU thread
and large flows go to the CPU, we start the partition search
from the largest flow, to reduce the iteration times.

Algorithm 1 Flow Scheduling Algorithm

1: function SCHEDULE FLOWS(A[])
2: Sc = 0;Nflows = A.size;

3: Nmsgs =
∑Nflows

i=0 A[i];

4: M = A[Nflows − 1];
5: for i = Nflows − 1 to 0 do
6: Sc+ = A[i];
7: Sg = Nmsgs − Sc;

8: TGPU = k2
⌈

Npkts/Nblock

Nsm

⌉
M + 2k1Sg + 2b1;

9: TCPU = k3m+ k4Sg + k5Sc + b2;
10: Ttotal = max(TGPU , TCPU );
11: if i == A.size-1 then
12: Tmin = Ttotal;
13: else
14: if Ttotal < Tmin then
15: Tmin = Ttotal;
16: else
17: return i;
18: end if
19: end if
20: end for
21: end function

The coefficients appearing in our model, i.e., ki’s and bi’s,

are estimated and calibrated periodically. Every 200 rounds

(as in our experiments), we profile CPU and GPU execution

times, Treceive, Tbatch, Tc process, Tcopy and Tg process. Then

we use linear regression techniques to fit the collected data

and calculate the coefficients.

Discussions. We do not consider dividing one large flow in

a batch into several portions, delaying processing of some

portions to later batching rounds, for evening out flow sizes.

There are two reasons: First, the latency experienced by

messages in the flow would be much larger, as compared

to offloading their processing to CPU in this round; Second,

NF code needs to be specifically modified to support processing

pieces of incomplete messages, especially in cases that the

large flow contains only 1-2 very large messages in the batch.

V. API FOR IMPLEMENTING NF

We separate NF processing logic from the main management

framework in FlowShader, by providing a set of APIs for

developers to implement the NF. With these APIs, the NF

processing logic can be shared between the CPU side and the

GPU side.

On the GPU side, an NF class and a state class need to be

defined. In the state class, the operator = should be overwritten

to allow easy copying of the states into GPU shared memory. In

the NF class, the function nf_logic takes an extra parameter

info_for_gpu, which is sent to the GPU when the NF is

initialized. The processing logic implemented in nf_logic is

same as the NF on the CPU side, while the code should be

programmed with the CUDA syntax.

6



Figure 7: APIs for implementing GPU-side NF

On the CPU side, the steps to implement the NF are very

similar to those in Fig. 7. The developers can just refer to the

code in GPU side and remove the components related with

GPU.
VI. EXPERIMENTS

We evaluate FlowShader using testbed experiments. We

summarize our key findings as follows:

Throughput: The system throughput achieved by FlowShader
is up to 6x that of the CPU-only baseline, 3x of the GPU-only

solution, and 2.3x of the fixed-ratio flow partition approach;

the throughput also remains stable under high skewness of the

flow data sizes.

Latency: The average latency introduced by FlowShader is

around 20ms, which is much smaller than the GPU-only

approach. The worst case (100ms) is bounded by the timeout

threshold. We think these latency results are acceptable in

WAN environment as the based latency from the client to the

nearest data center is around 20 ∼ 200ms in CDN [44]–[47].

Furthermore, deploying more NFs in one service chain does

not increase latency because the messages only need to be

buffered and transferred once.

Adaptiveness: Using its dynamic threshold adjustment strategy,

FlowShader is able to identify the optimal unprocessed message

threshold value, achieving the highest system throughput, within

seconds.

A. Experimental Setup

Implementation. FlowShader is built using about 2000 lines

of C++ code on top of Linux kernel TCP/IP stack with the

libevent library [48]. FlowShader works as a reverse proxy: it

intercepts and terminates client connections, processes requests

from clients received over these connections, and then sets

up new connections with the backend servers and forwards

requests to them over the new connections; on the reverse

path, it receives response messages from backend servers, and

then forwards the responses to corresponding clients. This is a

standard design adopted by L7 NFs [22], to take actions (e.g.,

drop malicious traffic) before forwarding flows to destinations.

We implement four NFs on FlowShader.

� Intrusion Detection System. The stream-processing IDS

(916 LoC) utilizes Aho-Corasick algorithm to examine the

messages of each flow; after processing a message belonging

to a flow, the state produced by the state machine should be

stored as flow state for next message’s processing.

� L7 load balancer. L7 load balancer (624 LoC) dispatches

flows to different backend Web servers according to their URIs.

The destination Web servers are different for different types

of URIs, as in the case of Application Gateway of Microsoft

Azure [49]. The load balancer routes the traffic based on the

incoming URI, such as static web pages, image files or video

files.

� Web Security Gateway. Traffic encryption is applied by

various protocols and services, e.g., SSL, VPN, and IPsec,

for secure communication. In the WSG (1415 LoC), we use

AES-CBC algorithm to decrypt the messages from clients and

forward the decrypted messages to backend servers, and then

encrypt the response messages received from backend servers

to clients.

� Web Application Firewall. The WAF (1577 LoC) examines

the HTTP POST requests: it uses regular expression matching to

check if there are any javascript, shell or powershell keywords

or build in function names in the message body; if so, it raises

alerts.

Testbed. We build a testbed with 8 machines connected to a

100GbE switch. FlowShader is running on a machine equipped

with two Intel Xeon processors E5-2630 v4 (20 physical cores

in total), a NVIDIA Tesla P100 GPU (56 SMs and 64 CUDA

cores per SM) and a Mellanox CX4 100GbE NIC. The OS

is 64 bit Ubuntu 16.04. Another machine runs backend server

services, e.g., Web servers. The rest 6 machines run clients to

generate requests to FlowShader.

Traffic Generator. We develop a traffic generator to send

HTTP GET or POST requests to FlowShader, and GET

requests are sent in all cases other than those involving the

WAF. The clients run traffic generators to produce flows with

different message sizes. For each connection, the client sends

the next request to FlowShader once it has received response

to the previous request. The traffic generator runs on each

client using multiple CPU threads.

We produce flows using both synthetic patterns and real-

world traces. In controlled experiments, the size of the messages

and the proportions of flows with the same message size are

produced following a zipf-like distribution which is common

for real-world network traffic [50]–[53], with message sizes

in the range of 32 bytes to 8M bytes. We also replay traffic

traces gathered by thousands of WAFs deployed in one of the

largest public cloud provider: there are 1 million connections;

message sizes among the connections varying from 7 bytes

to 82MB, with an average message size of about 4KB. The

clients change the volume of flows to FlowShader according

to the trace.

Schemes Compared. We implement the following baselines:

7



(a) 32-byte messages (b) different message sizes

Figure 8: Throughput of FlowShader without NF processing.

(i) CPU-only baseline where only the CPU cores are used for

flow processing and GPU is not used; (ii) GPU-only solution

where all flows are dispatched to the GPU, and each flow is

processed by one thread; (iii) fixed-ratio flow partition between

CPU and GPU, where we order all flows according to their

data sizes, and x% larger flows are sent to CPU and (1− x)%
smaller flows are sent to GPU. We utilize the group prefetch

strategy introduced in G-opt [54] to optimize the CPU-side

implementation in all cases.

In all experiments, we set the timeout threshold to 100 ms,

r thresh to 0.5% and step size to 32. Each experiment lasts

for some minutes. We repeat each experiment for 10 times and

show the average results.

Throughput. We first evaluate FlowShader’s ‘bare metal’

performance without running any NF processing logic: the

CPU threads copy flow messages to the GPU, the GPU threads

directly return without any processing, and then the CPUs copy

messages back and send them out. We send 2,000 flows to

each CPU core. In Fig. 8a, the flows has a small message size

of 32 bytes; with small message sizes, FlowShader needs to

frequently retrieve/dispatch messages from/to the TCP/IP stack,

with high overhead. The largest throughput (in K requests/s)

is achieved when FlowShader launches 12 threads using 12

CPU cores to share the GPU (throughput becomes stable with

additional cores). Fig. 8b shows the throughput under different

flow message sizes when the number of CPU cores is 12. With

larger message size, the number of requests processed per

second decreases, but the overall number of bits processed per

second increases.

Next, we evaluate FlowShader when it runs different NFs

and service chains. In each experiment, the CPU cores run

the same NF or service chain. In the rest of the controlled

experiments, the message size is the same 1KB among the flows,

unless stated otherwise. Fig. 9 and Fig. 10 show that Flow-
Shader consistently outperforms the CPU-only baseline with

different numbers of CPU cores in use, when FlowShader runs

individual NFs or service chains, respectively. For example,

FlowShader achieves 5-6x throughput of the baseline with

3-6 CPU cores for WAF. In our experiments, we observe that

the CPU-side optimization as in G-opt [54] does not bring

significant performance improvement. The reason may lie in

that G-opt has little impact on compute-intensive operations,

as also observed in [21].

Fig. 12 further shows the throughput when each CPU core

concurrently runs multiple service chains. In this experiment,

we send 2000 flows to each service chain in each CPU core.

“SCx” corresponds to the respective service chain in Fig. 10.

Compared with Fig. 10, the overall throughput is in general

between those achieved by running only the fastest chain and

running only the slowest chain.

Effectiveness of Flow Scheduling. We now generate flows

with uneven data sizes to evaluate FlowShader. We use 1 CPU

core and 5,000 flows in this experiment. The skewness ratio of

flow data sizes in a batch, is defined to be to ratio of data size of

the largest flow over the average data size of all flows (the same

as in Fig. 1). We compare with the GPU-only approach and a

fixed-ratio flow partition strategy where 80% (or 90%) smaller

flows go to GPU and 20% (or 10%) larger flows go to CPU.

Fig. 11 shows that the performance of GPU-only approach

degrades seriously with the increase of the skewness ratio; the

performance is quite stable with FlowShader which dispatches

flows strategically to both GPU and CPU (3x throughput

of the GPU-only approach at skewness ratio of 7 for most

NFs). For fixed-ratio allocation, the performance is worse

than FlowShader (FlowShader achieves 2.3x throughput at

skewness ratio of 7 for WSG), and even worse than the GPU-

only approach when the skewness ratio is small. When the

skewness ratio is 1, FlowShader performs close to the GPU-

only approach, with slightly smaller throughout in case of

some NFs, which is due to the overhead of running our flow

scheduling algorithm.

The second row in Fig. 11 illustrates the data size unevenness

ratio in the GPU. With FlowShader, the ratio is always below

2, demonstrating relative data size balance among those flows.

This ratio achieved by the fixed-ratio partition is even lower

than FlowShader in some cases, so that we see relatively

balanced flow data sizes in the GPU are necessary but not

sufficient to achieve the best performance, and the number of

flows dispatched to GPU and CPU, respectively, matters too.

We next evaluate the system throughput and message latency

with different unprocessed message thresholds (hence different

message batch sizes). We use 1 CPU core and 5,000 flows,

with a flow data size skewness ratio of 5. We disable the

dynamic threshold adjustment in FlowShader and manually

set the unprocessed message threshold in each experiment.

Throughput with different Message Threshold. Fig. 13

shows that the throughput is larger with the increase of the

threshold at first, and after a peak value, it becomes stable

or even drops a bit if the threshold continues to grow. The

drop could be due to the more-than-linear increase of overhead

when more messages/flows are processed, e.g., for sorting the

flows, etc.

Latency. We compute the latency of messages from when a

message is received in the message batch (after it is reassembled

by the TCP/IP stack) to when the message batch is forwarded

out. Fig. 14 shows this value that 90% messages are smaller

than. The latency increases linearly with the unprocessed

message threshold, but remains at around 20 ms when the

system throughput peaks (at a threshold value of about 1024).

8



Figure 9: Throughput of NFs compared with CPU-only baseline

Figure 10: Throughput of service chains compared with CPU-only baseline

Figure 11: Throughput with/without our flow scheduling algorithm

We have also evaluated message latencies incurred by GPU-

only and fixed-ratio partition strategies, and found that the

latencies experienced by FlowShader are approximately half

of theirs.

Dynamic Threshold Adjustment. We further evaluate the

dynamic adjustment of unprocessed message threshold in

FlowShader. Initially, the threshold is 32 (the number of threads

in a GPU warp); each time we adjust the threshold by 32 and

r thresh = 0.5%. Under the same settings as in previous set

of experiments, Fig. 15 shows the overall system throughput

achieved over time. We can see that the throughput improves

with the threshold adjustment and stabilizes at the maximum

within 20-30 seconds.

Evaluation with Real-world Traffic Traces. We now evaluate

FlowShader with traffic produced following the real traces.

Fig. 16 shows that FlowShader always outperforms CPU-only

and GPU-only baselines.

We next inspect average message latency experienced by this

realistic traffic with FlowShader and with GPU-only baseline,

when WAF is run in the systems. In Fig. 17, we see that

FlowShader’s average message latency with the realistic traffic

is about 26ms, much lower than that experienced by the GPU-

only baseline. The overhead of running the flow scheduling

algorithm is ignorable (only about 50μs). The GPU processing

time roughly equals the sum of the message receiving/batching

time and CPU processing time.

We further evaluate the influence of timeout threshold on

the average message latency in FlowShader. We sample flows

from the real traffic traces and vary the concurrent number of

flows in each message batch. In Fig. 18, we see that when the

number of concurrent flows exceeds the unprocessed message

threshold, the timer threshold has no effect on latency. When

the concurrent flows are less, timers are triggered, and the

latency is bounded by the timeout threshold.

VII. RELATED WORK

Flow-processing NFV Frameworks. Most existing work on

NFV focus on stateless, packet-processing network functions

[55]–[59]. A few recent studies investigate stateful flow-

processing NFs, e.g., StatelessNF [60], S6 [61], Flurries [62].

Built on mTCP [30], mOS [63] proposes a unified interface

for stateful middleboxes. FlowShader can also be built on

9



Figure 12: Throughput with

multiple service chains

Figure 13: Throughput with

diff. message thresholds

Figure 14: Latency with diff.

message thresholds

Figure 15: Throughput with

dynamic adjustment strategy

Figure 16: Throughput comparison using real traffic traces

Figure 17: WAF’s latency

using real traffic traces

Figure 18: WSG’s latency

with diff. timeout thresholds

top of user space TCP/IP stacks such as mTCP, F-Stack [31]

and SeaStar [64]. We choose to directly use linux TCP/IP

stack because it is most widely used among the candidates for

supporting a large number of concurrent connections.

GPU acceleration of NFs. A number of studies exploit GPUs

to accelerate packet processing [65], [66]. PacketShader [16]

implements GPU-based IPsec gateway and software router.

Snap [36] builds software routers exploiting GPUs, based

on the Click modular router [20]. Kargus [38] is a high-

performance IDS and employs GPUs for pattern matching.

Gnort [67] offloads pattern matching in Snort [3] to GPU.

GSwitch [68] built a GPU accelerated software switch. G-NET

[69] focuses on GPU Sharing among multiple NFs running on

different processes. NBA [32] adopts optimally tuned portions

to allocate packets to CPUs and GPUs for processing. APUNet

[21] utilizes integrated GPU to avoid data transfer bottleneck

in PCIe communication between CPU and GPU.

For flow processing acceleration using GPUs, we have

extensively discussed SSLShader [22]in the introduction and

motivation sections. The scenario and approaches are both

different from FlowShader. For GASPP [23], it does not

consider the important flow size imbalance problem.

VIII. DISCUSSIONS

State management. In FlowShader, the flow states are stored

locally. It can be easily extended to support state-of-the-art

state management approaches to handle shared states, such as

remote state server proposed in StatelessNF [60] and DHT-

based distributed state storage in S6 [61]. A communication

function for contacting remote state storage can be added in

our flow operators. The communication time, for contacting

remote state storage, is part of the CPU time, and our flow

scheduling algorithm can readily take it into consideration

when scheduling flows to CPU and GPU.

Extension to multiple GPUs. When there are multiple GPUs,

the batch manager in each CPU thread can decide which GPU

to launch the NF kernel on and dispatch flows to. It can

implement a two-level flow dispatching algorithm: (i) Decide

which GPU(s) to use to process the current batch of messages

based on some multi-device load balancing algorithms [39]

[40] [32]. (ii) Once the GPU is selected, the batch manager

can run our proposed flow scheduling algorithm to partition

flows among its CPU thread and the GPU.

IX. CONCLUSION

We have presented FlowShader, a GPU acceleration archi-

tecture for L7 flow-processing NFs. FlowShader is general,

that any NF can be implemented in the framework using the

same set of processing logic on both GPU and CPU, without

redesigning custom NF logic for operation-level parallelism

on GPU. FlowShader is efficient: our carefully designed

flow scheduling algorithm enables significant throughput im-

provement as compared to CPU-only, GPU-only and hybrid

approaches with fixed-ratio flow partition between CPU and

GPU, as well as latency reduction as compared to GPU-only

and fixed-ratio flow partition solutions.

10



REFERENCES

[1] “Large-scale adoption of nfv and sdn by telecom providers within two
years,” http://www.telco.com/blog/large-scale-adoption-of-nfv-and-sdn-
by-telecom-
providers-within-two-years/, 2017.

[2] “Virtual network services - wan optimization,”
http://www.verizonenterprise.com/products/networking/sdn-nfv/virtual-
network-services/vns-wan-optimization/, 2018.

[3] M. Roesch et al., “Snort: Lightweight intrusion detection for networks,”
in Proc. of the 13th USENIX Conference on System Administration
(LISA’99), 1999.

[4] A. Patcha and J.-M. Park, “An overview of anomaly detection techniques:
Existing solutions and latest technological trends,” Elsevier Computer
networks, vol. 51, no. 12, pp. 3448–3470, 2007.

[5] G. Gu, R. Perdisci, J. Zhang, W. Lee et al., “Botminer: Clustering
analysis of network traffic for protocol-and structure-independent botnet
detection,” in Proc. of the USENIX Security Symposium, 2008.

[6] K. Wang and S. J. Stolfo, “Anomalous payload-based network intrusion
detection,” in Proc. of the International Workshop on Recent Advances
in Intrusion Detection (RAID), 2004.

[7] Z. Shan, C. Lin, D. C. Marinescu, and Y. Yang, “Modeling and
performance analysis of qos-aware load balancing of web-server clusters,”
Elsevier Computer Networks, vol. 40, no. 2, pp. 235–256, 2002.

[8] M. G. Gouda and A. X. Liu, “A model of stateful firewalls and its
properties,” in Proc. of the 2005 IEEE International Conference on
Dependable Systems and Networks (DSN’05), 2005.

[9] A. Lahmadi and O. Festor, “Secsip: a stateful firewall for sip-based
networks,” in Proc. of IFIP/IEEE International Symposium on Integrated
Network Management, 2009.

[10] F. Cuppens, N. Cuppens-Boulahia, J. Garcia-Alfaro, T. Moataz, and
X. Rimasson, “Handling stateful firewall anomalies,” in Proc. of IFIP
International Information Security Conference, 2012.

[11] W.-H. Kao, “Security gateway utilizing ssl protocol protection and related
method,” 2006.

[12] A. Shimbo, A. Inoue, M. Ishiyama, and T. Okamoto, “Packet authenti-
cation and packet encryption/decryption scheme for security gateway,”
2000.

[13] M. Becher, Web application firewalls. VDM Verlag, 2007.
[14] E. Fong and V. Okun, “Web application scanners: definitions and

functions,” in Proc. of the 40th Annual Hawaii International Conference
on System Sciences (HICSS’07), 2007.

[15] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng,
and E. Chen, “Clicknp: Highly flexible and high performance network
processing with reconfigurable hardware,” in Proc. of ACM SIGCOMM,
2016.

[16] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: a gpu-accelerated
software router,” in Proc. of ACM SIGCOMM, 2010.

[17] “Azure windows vm sizes - gpu,” https://docs.microsoft.com/en-
us/azure/virtual-machines/windows/sizes-gpu, 2018.

[18] “Amazon ec2 elastic gpus,” https://aws.amazon.com/ec2/elastic-gpus/,
2018.

[19] “Gpus on google cloud,” https://cloud.google.com/gpu/, 2018.
[20] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The

Click modular router,” ACM Transactions on Computer Systems (TOCS),
vol. 18, no. 3, pp. 263–297, 2000.

[21] Y. Go, M. A. Jamshed, Y. Moon, C. Hwang, and K. Park, “Apunet:
Revitalizing GPU as packet processing accelerator,” in Proc. of the 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI’17), 2017.

[22] K. Jang, S. Han, S. Han, S. B. Moon, and K. Park, “Sslshader: Cheap
ssl acceleration with commodity processors,” in Proc. of the 8th USENIX
Symposium on Networked Systems Design and Implementation (NSDI’11),
2011.

[23] G. Vasiliadis, L. Koromilas, M. Polychronakis, and S. Ioannidis, “Gaspp:
A gpu-accelerated stateful packet processing framework,” in Proc. of the
2014 USENIX Annual Technical Conference (ATC), 2014.

[24] “NVIDIA,” http://www.nvidia.com/page/home.html, 2018.
[25] “AMD,” https://www.amd.com/en, 2018.
[26] “Intel graphics technology,” https://www.intel.com/content/www/us/en/architecture-

and-technology/visual-technology/graphics-overview.html, 2018.
[27] “Discrete GPU,” https://www.quora.com/What-is-a-discrete-GPU, 2018.
[28] “Nvidia pascal architecture,” https://www.nvidia.com/en-us/data-

center/pascal-gpu-architecture/, 2018.

[29] “Readme.stream5,” https://www.snort.org/faq/readme-stream5, 2018.

[30] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and K. Park,
“mtcp: a highly scalable user-level tcp stack for multicore systems,” in
Proc. of 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14), 2014.

[31] “Fstack,” http://www.f-stack.org, 2018.

[32] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and S. Moon, “Nba (network
balancing act): a high-performance packet processing framework for
heterogeneous processors,” in Proc. of the Tenth European Conference
on Computer Systems (EuroSys’15), 2015.

[33] A. Mayer, A. Wool, and E. Ziskind, “Fang: A firewall analysis engine,”
in Proc. of the 2000 IEEE Symposium on Security and Privacy, 2000.

[34] X. Yi, J. Duan, and C. Wu, “Gpunfv: a gpu-accelerated nfv system,” in
Proc. of the First Asia-Pacific Workshop on Networking (APNet), 2017.

[35] J. Brutlag, “Speed matters for google web search,”
https://services.google.com/fh/files/blogs/google-delayexp.pdf, 2009.

[36] W. Sun and R. Ricci, “Fast and flexible: Parallel packet processing
with gpus and click,” in Proc. of the Ninth ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS’13),
2013.

[37] G. Wang, Y. Lin, and W. Yi, “Kernel fusion: An effective method for better
power efficiency on multithreaded gpu,” in Proc. of the 2010 IEEE/ACM
International Conference on Green Computing and Communications
& International Conference on Cyber, Physical and Social Computing,
2010.

[38] M. A. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi, and
K. Park, “Kargus: a highly-scalable software-based intrusion detection
system,” in Proc. of the 2012 ACM Conference on Computer and
Communications Security (CCS’12), 2012.

[39] L. Chen, O. Villa, S. Krishnamoorthy, and G. R. Gao, “Dynamic load
balancing on single-and multi-gpu systems,” in Proc. of the 2010 IEEE
International Symposium on Parallel & Distributed Processing (IPDPS),
2010.

[40] L. Koromilas, G. Vasiliadis, I. Manousakis, and S. Ioannidis, “Efficient
software packet processing on heterogeneous and asymmetric hardware
architectures,” in Proc. of the Tenth ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems (ANCS’14), 2014.

[41] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity
of computer computations, 1972.

[42] “Integer programming,” https://en.wikipedia.org/wiki/Integer-
programming, 2018.

[43] J. Edmonds and E. L. Johnson, “Matching: A well-solved class of integer
linear programs,” in Combinatorial OptimizationEureka, You Shrink!,
2003.

[44] S. Choy, B. Wong, G. Simon, and C. Rosenberg, “A hybrid edge-
cloud architecture for reducing on-demand gaming latency,” Proc. of the
Multimedia Systems, 2014.

[45] M. Calder, A. Flavel, E. Katz-Bassett, R. Mahajan, and J. Padhye,
“Analyzing the performance of an anycast cdn,” in Proc. of the Internet
Measurement Conference, 2015.

[46] X. Fan, E. Katz-Bassett, and J. Heidemann, “Assessing affinity between
users and cdn sites,” in Proc. of the International Workshop on Traffic
Monitoring and Analysis, 2015.

[47] R. Singh, A. Dunna, and P. Gill, “Characterizing the deployment and
performance of multi-cdns,” in Proc. of the Internet Measurement
Conference, 2018.

[48] “Libevent - an event notification library,” http://libevent.org, 2003.

[49] “Application gateway of Microsoft Azure,” https://docs.microsoft.com/en-
us/azure/application-gateway/application-gateway-introduction, 2018.

[50] N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood, and X. Huang,
“Leveraging zipf’s law for traffic offloading,” 2012.

[51] L. Durbeck, J. G. Tront, and N. J. Macias, “Energy efficiency of zipf
traffic distributions within facebook’s data center fabric architecture,”
in Proc. of Power and Timing Modeling, Optimization and Simulation
(PATMOS), 2015 25th International Workshop on, 2015.

[52] B. Blaszczyszyn and A. Giovanidis, “Optimal geographic caching in
cellular networks,” in Proc. of Communications (ICC), 2015 IEEE
International Conference on, 2015.

[53] I. Cho, K. Jang, and D. Han, “Credit-scheduled delay-bounded congestion
control for datacenters,” in Proc. of the Conference of the ACM Special
Interest Group on Data Communication, 2017.

[54] A. Kalia, D. Zhou, M. Kaminsky, and D. G. Andersen, “Raising the
bar for using gpus in software packet processing,” in Proc. of the 12th

11



USENIX Symposium on Networked Systems Design and Implementation
(NSDI’15), 2015.

[55] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: Enabling innovation in network function
control,” in Proc. of ACM SIGCOMM, 2015.

[56] J. Hwang, K. Ramakrishnan, and T. Wood, “Netvm: high performance
and flexible networking using virtualization on commodity platforms,”
in Proc. of the 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’14), 2014.

[57] J. Fan, Z. Ye, C. Guan, X. Gao, K. Ren, and C. Qiao, “Grep: Guaranteeing
reliability with enhanced protection in nfv,” in Proc. of the 2015 ACM
SIGCOMM Workshop on Hot Topics in Middleboxes and Network
Function Virtualization, 2015.

[58] C. Sun, J. Bi, Z. Zheng, and H. Hu, “Sla-nfv: an sla-aware high
performance framework for network function virtualization,” in Proc. of
ACM SIGCOMM, 2016.

[59] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“Netbricks: Taking the v out of nfv,” in Proc. of the 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI’16),
2016.

[60] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network functions:
Breaking the tight coupling of state and processing,” in Proc. of the 14th
USENIX Symposium on Networked Systems Design and Implementation
(NDSI’17), 2017.

[61] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker,
“Elastic scaling of stateful network functions,” in Proc. of the 15th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI’18), 2018.

[62] W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan, and T. Wood,
“Flurries: Countless fine-grained nfs for flexible per-flow customization,”
in Proc. of the 12th ACM Conference on emerging Networking
EXperiments and Technologies (CoNEXT’16), 2016.

[63] M. A. Jamshed, Y. Moon, D. Kim, D. Han, and K. Park, “mos: a reusable
networking stack for flow monitoring middleboxes,” in Proc. of the 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI’17), 2017.

[64] “Seastar,” http://seastar.io/, 2018.
[65] K. Kang and Y. S. Deng, “Scalable packet classification via gpu

metaprogramming,” in Proc. of Design, Automation & Test in Europe
(DATE’11), 2011.

[66] J. Tseng, R. Wang, J. Tsai, S. Edupuganti, A. W. Min, S. Woo,
S. Junkins, and T.-Y. C. Tai, “Exploiting integrated gpus for network
packet processing workloads,” in Proc. of the 2nd IEEE Conference on
Network Softwarization (NetSoft’16), 2016.

[67] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and
S. Ioannidis, “Gnort: High performance network intrusion detection
using graphics processors,” in Proc. of International Workshop on Recent
Advances in Intrusion Detection, 2008.

[68] M. Varvello, R. Laufer, F. Zhang, and T. Lakshman, “Multilayer packet
classification with graphics processing units,” Proc. of IEEE/ACM
Transactions on Networking, 2016.

[69] K. Zhang, B. He, J. Hu, Z. Wang, B. Hua, J. Meng, and L. Yang, “G-net:
Effective GPU sharing in NFV systems,” in Proc. of the 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI’18),
2018.

12


