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ABSTRACT

Intra-host networks, including heterogeneous devices and
interconnect fabrics, have become increasingly complex and
crucial. However, intra-host networks today do not provide
sufficient manageability. This prevents data center operators
from running a reliable and efficient end-to-end network,
especially for multi-tenant clouds. In this paper, we analyze
the main manageability deficiencies of intra-host networks
and argue that a systematic solution should be implemented
to bridge this function gap. We propose two key building
blocks for a manageable intra-host network: a fine-grained
monitoring system and a holistic resource manager. We dis-
cuss the research questions associated with realizing these

two building blocks.
CCS CONCEPTS

+ Networks — Network manageability; - Computer sys-
tems organization — Architectures.

1 INTRODUCTION

Recent years have witnessed the increasing complexity of
servers. Numerous heterogeneous hardware accelerators
have been adopted in commodity infrastructure for various
purposes. A state-of-the-art commodity server (e.g., NVIDIA
DGX [45]) can be equipped with eight high-speed Infiniband
network adapters and eight GPUs to achieve superior com-
putation and communication capabilities. These hardware
accelerators, as well as the CPU sockets, DRAMs, and stor-
age devices (e.g., NVMe SSD), have formed a complicated
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intra-host network with a comparable complexity as a data
center rack.

Conventional wisdom believes that the intra-host network
fabric (such as the PCle and memory bus) delivers stable
and high performance. For inter-host communication, the
latency introduced by the intra-host network is usually sub-
microsecond, or at most a few microseconds. This latency
is negligible compared to the milliseconds introduced by
the Ethernet fabric. However, a line of recent works has
demonstrated a paradigm shift in today’s data centers [2, 43].
Fast inter-host communication technologies like RDMA and
DPDK have significantly improved the inter-host network
performance [10, 18, 19, 25]. The microsecond-level intra-
host latency thus can become a main contributor to the
end-to-end latency, and can even be the bottleneck for end-
to-end distributed systems [40]. Besides, high-performance
heterogeneous accelerators demand substantial intra-host
network resources (e.g., bandwidth). The intra-host fabric,
therefore, becomes unprecedentedly congested and causes
performance jitters and even anomalies [2, 17, 31-33, 37].

The roles of the intra-host network and the inter-host net-
work have become equally important. However, the capabil-
ity to effectively monitor and control the intra-host networks
is far less mature than that for inter-host networks. We call
this capability the manageability of the network. Inter-host
network manageability is a well-studied area. For example,
many works have been proposed to improve inter-host net-
work manageability from a variety of aspects, including net-
work telemetry [22, 39, 54, 55], traffic engineering [3, 4, 41],
load balancing [6, 26, 57], network troubleshooting [9, 23, 52],
quality-of-service (QoS) guarantee and performance isola-
tion [8, 11, 12, 24, 30, 47, 48, 50]. Unfortunately, almost none
of these functionalities are supported in today’s intra-host
networks. The insufficient manageability of intra-host net-
works prevents data center operators from building a high-
performance and highly reliable end-to-end network, where
the intra-host network serves as the last hop. We believe that
two key features are missing. First, the lack of telemetry and
monitoring systems leads to poor observability, which pre-
vents data center operators from conducting efficient failure
analyses and troubleshooting. Besides, the lack of resource
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Figure 1: An example topology of a commodity server. The highlighted links depict the complex intra-host network
within a modern server. The performance numbers describe the capacity and basic latency of common devices in
commodity data center servers, such as Intel Cascade Lake and AMD EPYC CPUs, and PCle 4.0 buses.

management leads to performance interference. Similar to
inter-host networks, multiple users can share the same intra-
host fabrics (e.g., PCle and memory bus) simultaneously.
Without careful resource management, one buggy or ma-
licious user may exhaust the resources of some intra-host
fabric (e.g, bandwidth) and cause other users to experience
poor performance. This interference impairs delivering pre-
dictable application performance and can even cause security
issues under multi-tenant scenarios.

In this paper, we argue that it is time to rethink the design
of intra-host networks for manageability. To this end, we
draw inspiration from the design of inter-host networks and
propose two key building blocks for a manageable intra-host
network: a fine-grained monitoring system and a holistic
resource manager. These two building blocks will bridge the
manageability gap between the intra-host and the inter-host
network. For these two building blocks, we will discuss their
key utilities, as well as the new research challenges raised in
realizing these building blocks.

2 MANAGEABILITY ISSUES IN
INTRA-HOST NETWORKS

Data center applications are constantly striving for more
computational resources and better performance. To meet
this growing demand, modern data center servers are equipped
with advanced CPUs, and many heterogeneous hardware ac-
celerators are being incorporated into these servers to further
accelerate computation (e.g., GPU, FPGA), communication
(e.g., RDMA NIC), and improve storage performance (e.g.,
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NVMe SSD). These hardware components are connected
through various types of intra-host fabrics, including PCle,
intra-socket connects (e.g., memory buses) and inter-socket
connects (e.g., Intel QPI and AMD Infinity). We name these
fabrics and the end node devices together as the intra-host
network.

The performance of intra-host networks is crucial in to-
day’s data centers. The primary reason is that the perfor-
mance of the inter-host network has been advancing rapidly.
200 Gbps Ethernet NICs and switches have already been
widely used in data centers, and their latency is within a
single-digit microsecond [44, 46]. This trend makes the per-
formance overhead (such as latency) incurred by the intra-
host network no longer negligible. We present an example
intra-host network and the key performance numbers in
Figure 1. The topology and the numbers are mostly based on
previous measurement works [38, 43, 49, 53, 56]. The specific
numbers depend on the specific device type and the tech-
nology. For example, the intra-socket connect latency varies
depending on interconnect architecture (e.g., core mesh and
the NUMA topology) and the type of memory access (e.g.,
cache/DRAM and local/remote). The intra-socket capacity
(e.g., memory bandwidth) is also determined by the number
and the type of memory channels enabled on the memory
controller. Therefore, we present general order of magnitude
ranges for commodity hardware, which should be sufficient
to provide a sense of the intra-host network performance.
The fabric latency includes the processing delay of the corre-
sponding component (e.g., PCle switch). The sum latency of
end-to-end access, such as a remote RDMA access traversing



all the (1) to (5), can make the intra-host network become
the potential bottleneck for the entire end-to-end networked
system. A line of research has been proposed to improve the
intra-host network performance by tuning the host topol-
ogy, scheduling the applications, and even introducing new
protocols and host interconnects [5, 7, 21, 31, 35, 49]. For
example, Compute Express Link (CXL) [49] exposes memory
in devices as remote memory in a NUMA system, and it en-
ables devices to directly access host local memory through
a cache coherence interface. These features provide a more
flexible memory model and reduce the overhead (e.g., with
a latency of ~150ns from device to host memory [49]) for
intra-host access.

As the performance of the intra-host and the inter-host
start to match, we observe two irritating problems.

The intra-host network becomes a constant source
of performance anomalies, but debugging a complex
intra-host network is difficult. The complexity of intra-
host networks in data centers is steadily increasing, and con-
gestion in the intra-host network causes application-level
performance anomalies [2, 33, 37, 43]. For example, an RDMA
loopback traffic can exhaust the PCle bandwidth and causes
the application to suffer from PCle congestion [31]. Pinpoint-
ing problems in the intra-host network is notoriously difficult
due to the lack of observability in such a complex network.
As shown in Figure 1, advanced CPUs have complicated in-
ternal microarchitectures. A single CPU socket today can
have tens of CPU cores and support multiple PCle root ports
and multiple memory controllers, which creates complex
interconnects among cores and between sockets. This also
allows the incorporation of various types of devices. For ex-
ample, multiple PCle root ports can connect a single CPU
socket to more than ten PCle devices, with a complex multi-
level PCle fabric (e.g, root ports and several PCle switches).
Furthermore, such incorporation leads to a greater number
of possible configurations. The dashed box in Figure 1 shows
part of the possible configurations, which also heavily im-
pact the performance of intra-host connections. For example,
Intel Data Direct I/O technology (DDIO) [27] enables 1/O
devices to transfer data to the last level cache directly, thus
the configuration of DDIO determines the specific commu-
nication pathway between I/O devices and the CPU. The
trend of hardware offloading will bring more heterogeneous
I/O devices into the intra-host networks, and the emerging
protocols (e.g., CXL) will also enable more flexible commu-
nication patterns. These trends only make this debugging
problem predictably worse.

The hardware devices connected by the intra-host network
have certain observability features. They usually expose
some performance and diagnostic counters. For example,
Intel provides a Performance Counter Monitor (PCM) [28]
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and Resource Director Technology (RDT) [29] that collect
hardware counters and reports overall statistics of PCle,
inter-socket connects, memory buses, and CPU cache. Mod-
ern Ethernet adapters also provide the received/transmitted
bytes/packets counters [42, 44]. However, monitoring these
statistics only provides the limited debugging ability. For
example, data center operators can use these counters to
detect congestion, but identifying the root cause of the con-
gestion and detecting other complex performance anomalies
remains challenging.

The intra-host network is a source of performance
interference. As the number of hardware accelerators inte-
grated into the host increases, the intra-host network carries
more heterogeneous traffic and becomes increasingly con-
gested. Applications that use these high-throughput hard-
ware accelerators can consume a large amount of intra-host
network bandwidth, causing intra-host network congestion.
When multiple applications are running on the server, shar-
ing bottlenecked intra-host network resources leads to per-
formance interference and degraded quality of service (QoS).
For instance, a remote key-value store client and a machine
learning application may be co-located on the same host.
The machine learning application may have a substantial
workload for CPU-GPU communication (e.g., loading train-
ing data) and heavily utilize the bandwidth of the PCle fabric
and the memory bus. The key-value store application seems
to have no interference with the machine learning applica-
tion since it does not use GPU at all. However, the traffic
of the remote key-value store application may traverse the
same PCle root port and the memory bus and therefore suf-
fer from high latency and poor application performance due
to the high utilization of these intra-host fabrics. The situa-
tion becomes even worse in multi-tenant scenarios, where
tenants may maliciously exhaust intra-host network fabric
resources and impair others.

Another type of interference originates from the tight
coupling of the intra-host network and other components,
including the inter-host network and other host devices.
Besides the normal I/O requests (e.g., DMA for payload)
that consume the intra-host network resources, there are
many unintended resource consumption caused by various
reasons. For example, with DDIO enabled, high-bandwidth
PCle devices such as high-performance NIC and RAID SSDs
can directly write to the dedicated last-level cache (LLC)
ways. However, due to the limited cache spaces and the high
throughput direct write, these two devices can cause cache
thrashing and the data are evicted from the cache before
being consumed by the applications. This cache thrashing



ultimately leads to more consumption of the intra-host net-
work resources (e.g., memory bus bandwidth). Similar thrash-
ing also happens to devices with an on-chip cache, such as
RDMA NICs and NVMe SSDs.

There are some hardware features that mitigate intra-host
network performance interference. For example, Intel RDT
technology supports allocating memory bandwidth to dif-
ferent tenants (e.g, VMs), which mitigates the performance
interference from the memory bus. Unfortunately, these fea-
tures only provide limited point solutions that mitigate inter-
ference from specific components in a coarse-grained way.
They therefore cannot provide an efficient and integrated
solution that eliminates the end-to-end performance inter-
ference from the intra-host network.

The root cause for the abovementioned two problems is
that modern intra-host networks do not have adequate man-
ageability. This makes operating an efficient and reliable
end-to-end network difficult.

3 TOWARDS A MANAGEABLE
INTRA-HOST NETWORK

If we want an intra-host network to be manageable, what
features should the intra-host network have? This is an open
question without a definite answer to date. However, one
area we can draw inspiration from is the design of today’s
inter-host network, which has been managed by data center
operators for several decades. Many manageability features
have been integrated into the inter-host network over the
years, allowing observability and control of inter-host traffic.
In this section, we aim to map these manageability features
to the intra-host setting and think about (1) what utilities
they will bring to the intra-host network, and (2) what are
the new research questions associated with realizing these
features in the intra-host setting.

3.1 Fine-grained Monitoring System

Data center operators have implemented many fine-grained
monitoring systems to improve observability in inter-host
networks. These systems provide informative inter-host net-
work usage statistics, enabling network operators to conduct
a detailed analysis of the network status, such as failure
or performance anomaly detection. This helps to reduce
network downtime, improve availability, and potentially im-
prove resource efficiency. Similarly, we imagine that there
should be a fine-grained monitoring system in future intra-
host networks to provide observability, consisting of the
following components.

A monitor for intra-host network configuration and
resources. The state of an inter-host network is usually
collected periodically by a centralized service [51] to allow
for centralized monitoring and control of network traffic.
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Similarly, a manageable intra-host network should monitor
configurations and resource usage on all the links in the intra-
host network. The resources include the bandwidth usage of
the memory bus and the PCle bus. Further, the resource usage
information should include total and per-tenant (e.g., VM,
container) usage statistics of the various types of resources.
This allows resource management discussed in §3.2.

A platform for anomaly detection. We believe future
intra-host networks should contain a platform to analyze
monitoring results holistically, enabling device failure, mis-
configuration, and performance anomaly detection. A mo-
tivating case is that a hardware failure occurring on the
PCle switch may silently cause the connected PCle device
to suffer performance degradation. Applications thereby suf-
fer from poor communication performance. This cannot be
easily detected using performance counters only and will
take network operators a long time to debug. This can be
addressed by having devices on the intra-host network pe-
riodically send “heartbeats” to each other, similar to works
like Pingmesh [23] for inter-host networks.

Diagnostic tools for symptom analysis and automatic
troubleshooting. A manageable intra-host network should
provide a set of diagnostic tools for debugging purposes, such
as ping, traceroute, iperf, and wireshark in inter-host
networks. When a performance issue occurs, data center
operators can manually or automatically use these tools
to profile the behaviors and performance of the intra-host
network. This enables them to pinpoint the root cause of the
performance issues efficiently.

The above functions are crucial to increasing the intra-
host network observability and hence improving the debug-
ging efficiency and thus the network availability. However,
achieving them raises many interesting open questions.

Q1. Informative data and where to find them? The mon-
itoring data can be collected in various ways, such as from
hardware device counters and software module intercep-
tion. However, what will be the best data source for future
intra-host network monitoring remains an open question.
Software interception is relatively more flexible but may be
less informative without visibility into the hardware compo-
nents. Hardware counters can provide more detailed informa-
tion but in a coarse-grained way. For example, almost none
of today’s hardware counters supports accurate per-tenant
monitoring, and the access frequency (e.g., data points per
second) is usually limited. Future generations of hardware
may support more monitoring abilities, but hardware ven-
dors may prioritize utilizing the same amount of hardware
resources to further improve the performance over exposing
more diagnostic counters.



Q2. The dilemma of storage and processing. The moni-
tor can generate a large amount of data given the complexity
of the intra-host networks, and the data needs to be pro-
cessed efficiently to provide accurate real-time monitoring.
This makes where to store and process this data an inter-
esting question. Processing the data locally may consume
on-device computation resources, which are usually very
limited. However, sending the collected data to other host
devices may consume substantial intra-host communication
resources. For example, storing data in memory consumes
memory bandwidth (and may consume PCle bandwidth if
the source of monitoring data comes from a PCle device).
Additionally, how to achieve real-time monitoring is also a
challenging question. Given the ultra-low latency of mod-
ern intra-host networks, even micro-second level latency
overheads in the monitoring loop can be significant.

Q3. Advanced diagnostic capabilities. Monitoring sys-
tems in inter-host networks bring many opportunities to
build advanced solutions. For example, it is increasingly a
trend to use machine learning for inter-host network failure
localization and troubleshooting [1, 9, 14, 15]. Inter-host net-
work links are homogeneous, and so are the collected data.
Usually, data center operators monitor transmitted/received
bytes per second, packets per second, and packet loss per
second on Ethernet links. Intra-host networks are more het-
erogeneous, so the collected data will have more modalities
(e.g., DDIO cache usage, and PCle bandwidth consumption).
This means using machine learning may be more essential
in order to leverage these high-modality data for diagnosis
than that in inter-host networks.

3.2 Holistic Resource Management

Holistic resource management is one of the most impor-
tant success factors for inter-host networks to eliminate
performance interference and deliver predictable end-to-
end performance [8, 13, 30, 34, 47, 48]. For example, inter-
host network controllers can allocate a fixed amount of re-
sources (e.g., bandwidth) based on resource model like hose
model [16], and enforce the allocation through many re-
source managers within the inter-host network, including
the virtual switch on the end host and the routers in fabrics.
We imagine that future intra-host networks should provide
similar holistic resource management for manageability, in-
cluding the following parts.

Virtualized intra-host network abstraction. The man-
ageable intra-host networks for multi-tenant scenarios should
provide an independent, virtualized view of the intra-host
network for different tenants, similar to the virtual network
abstraction provided in inter-host networks [8]. Each ten-
ant should see a dedicated isolated virtual intra-host net-
work. For example, if a tenant is only allocated half of the
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PCle bandwidth to an I/O device, from the tenant’s perspec-
tive, it should see an illusion that the allocated bandwidth
is the corresponding PCle capacity. This provides a clean
and simple abstraction for tenant applications. Similar to
inter-host networks, such a virtualized abstraction should
improve resource efficiency and flexibility for both infras-
tructure providers and tenant applications. For instance, this
abstraction should enable tenants to easily migrate their VMs
or containers without reconfiguring their own intra-host net-
works.

Performance targets interpreter . The manageable intra-
host network needs to “interpret” the application intent (i.e.,
performance targets) into a set of low-level requirements
based on a resource model. For example, an application may
desire 20 Gbps end-to-end bandwidth for its distributed GPU
communication. To meet this target, resources of memory
buses and several PCle links all need to be allocated. The
interpreter needs to generate the requirements in a holistic
way, enabling different components to collaboratively pro-
vide end-to-end allocation. The interpreter should also be
general and flexible because the intra-host network topology
and capacities may vary on different hosts.

Topology-aware resource scheduler. The intra-host net-
work should schedule the resources based on the topology
and current usage. The resource requirements generated
by the compiler might be achieved differently. For example,
there can be several GPU-SSD pathways within an intra-host
network that can support the same amount of bandwidth.
The scheduler needs to carefully choose one of the path-
ways based on topology and usage information to maximize
overall resource efficiency when satisfying the requirements.

Dynamic resource arbiter. The manageable intra-host
networks should be able to dynamically arbitrate resources
at run time. This enables data center operators to enforce
any resource schedule plan generated by the scheduler. The
arbiter should dynamically adjust the allocation promptly
when applications come and go to avoid interference and
poor resource utilization.

The compile-schedule-arbitrate scheme as well as the vir-
tualized abstraction allows the intra-host networks to elimi-
nate performance interference and deliver predictable perfor-
mance based on the applications’ intent. We identify several
intriguing open questions about such resource management
for future intra-host networks.

Q1. What resource model to apply for intra-host net-
works? Intra-host networks are usually more heteroge-
neous than inter-host networks, with more types of hard-
ware components and resources. What resource model (e.g.,
pipe and hose [16]) best fits the intra-host network becomes
an interesting question. If work-conserving should or can



be supported also remains unknown when multiple types of
resources exist in a complex, heterogeneous network. The
resource scheduler may need to maintain different models
for different components accordingly.

Q2. Where to implement the resource arbiter? Inter-
host networks can control the traffics both on the end hosts
and in fabrics. However, many devices in the intra-host net-
works may lack sufficient programmability. For example, it
is currently challenging to implement complex resource al-
location functions on a PCle switch. The next generation of
hardware may provide opportunities to address this, which
however could be a significant hardware challenge. Another
possibility is that there may be a unified software shim layer
for future intra-host networks that arbitrates all the intra-
host network operations, including various I/O requests.

Q3. How to reduce the overhead of resource manage-
ment? Modern intra-host networks provide ultra-low la-
tency. Therefore, the overhead of such a resource manage-
ment system should only introduce negligible overhead. For
example, the schedule and arbitration may need to be fin-
ished in microsecond level in order to achieve efficient and
accurate resource management. Reducing the overhead of
resource management needs careful design and much opti-
mization efforts, which remains an interesting open ques-
tion.

4 RELATED WORK

Understanding intra-host networks. There are many
works that focus on understanding intra-host networks. For
example, Agarwal et. al. 2] study the impact of IO memory
management units and memory bus contention on the host
interconnect performance. Zambre et. al. [56] use a PCle
analyzer to conduct a latency breakdown for message trans-
mission and analyze the overhead introduced by different
components, including the intra-host network. Neugebauer
et. al. [43] propose a theoretical model for PCle subsystem,
and characterize and benchmark different PCle platforms to
evaluate their impacts on the host networking performance.
Li et. al. [36] assess the performance of modern GPU inter-
connects. Recently, Hostping [40] is proposed to diagnose
intra-host bottlenecks in RDMA networks. This line of lit-
erature indicates the increasing importance of intra-host
networks.

Improving intra-host networks performance. Many
efforts have been spent to improve the intra-host network
performance. Emerging hardware protocols such as CXL [49]
and the systems leveraging the new protocols [20] reduce the
intra-host communication overhead and provide more flexi-
ble communication patterns. Besides, many systems are built
on top of commodity hardware to improve the intra-host
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networks. For example, Lamda [37] focuses on the impact
of memory bus congestion on the end-to-end network and
proposes a mitigation solution by leveraging the DDIO tech-
nology. BytePS [31] schedules the machine learning work-
load to reduce PCle contention and improve communication
among GPU workers. These works primarily focus on perfor-
mance optimization rather than manageability improvement
for intra-host networks. Additionally, they currently only
focus on parts of the intra-host networks and lack a holistic
view.

5 CONCLUSION

The performance of inter-host networks has substantially
improved in the past decade, making the intra-host network
resources bottlenecks for networked systems. In this paper,
we argue that an intra-host network should have similar
manageability features as those in inter-host networks. This
will allow operators to better debug and monitor the intra-
host network. In addition, intra-host network resources can
be better utilized and shared across applications. We present
two key building blocks to achieve this vision.
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