
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Explicit Path Control in Commodity Data Centers:
Design and Applications

Shuihai Hu, Kai Chen, Haitao Wu, Wei Bai, Chang Lan, Hao Wang, Hongze Zhao, and Chuanxiong Guo

Abstract—Many data center network (DCN) applications re-
quire explicit routing path control over the underlying topologies.
In this paper, we present XPath, a simple, practical and readily-de-
ployable way to implement explicit path control, using existing
commodity switches. At its core, XPath explicitly identifies an
end-to-end path with a path ID and leverages a two-step compres-
sion algorithm to pre-install all the desired paths into IP TCAM
tables of commodity switches. Our evaluation and implementation
show that XPath scales to large DCNs and is readily-deployable.
Furthermore, on our testbed, we integrate XPath into four appli-
cations to showcase its utility.
Index Terms—Data center networks, explicit path control,

commodity switches.

I. INTRODUCTION

D RIVEN by modern Internet applications and cloud com-
puting, data centers are being built around the world. To

obtain high bandwidth and achieve fault tolerance, data center
networks (DCNs) are often designed with multiple paths be-
tween any two nodes [4], [5], [15], [19], [20], [33]. Equal Cost
Multi-Path routing (ECMP) [25] is the state-of-the-art for multi-
path routing and load-balancing in DCNs [6], [19], [33].
In ECMP, a switch locally decides the next hop from multiple

equal cost paths by calculating a hash value, typically from the
source and destination IP addresses and transport port numbers.
Applications therefore cannot explicitly control the routing path
in DCNs.
However, many emerging DCN applications such as provi-

sioned IOPS (input/output operations per second), fine-grained
flow scheduling, bandwidth guarantee, etc. [6], [8], [9], [21],
[23], [24], [27], [28], [41], [47], all require explicit routing path
control over the underlying topologies (Section II).
Many approaches such as source routing [38], MPLS [37],

and OpenFlow [31] can enforce explicit path control. How-
ever, source routing is not supported in the hardware of the

Manuscript received May 23, 2015; accepted September 16, 2015; approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor S. Sen. This work was
supported by the Hong Kong RGC ECS 26200014, GRF 16203715, and China
973 Program under Grant No. 2014CB340303.
S. Hu, K. Chen, and W. Bai are with Hong Kong University of Science

and Technology, Hong Kong (e-mail: shuaa@cse.ust.hk; kaichen@cse.ust.hk;
wbaiab@cse.ust.hk).
H. Wu, C. Guo are with Microsoft, Redmond, WA 98052 USA (e-mail:

hwu@microsoft.com; chguo@microsoft.com).
C. Lan is with the University of California, Berkeley, Berkeley, CA 94710

USA (e-mail: clan@eecs.berkeley.edu).
H. Wang is with the University of Toronto, Toronto, ON M5S 3G4, Canada

(e-mail: wh.sjtu@gmail.com).
H. Zhao is with Duke University, Durham, NC 27708 USA (e-mail:

hongze@cs.duke.edu).
Digital Object Identifier 10.1109/TNET.2015.2482988

data center switches, which typically only support destination
IP based routing. MPLS needs a signaling protocol, i.e., Label
Distribution Protocol, to establish the path, which is typically
used only for traffic engineering in core networks instead of ap-
plication-level or flow-level path control. OpenFlow in theory
can establish fine-grained routing paths by installing flow en-
tries in the OpenFlow switches via the controller. But in prac-
tice, there are practical challenges such as limited flow table
size and dynamic flow path setup that need to be addressed (see
Section VI for more details).
In order to address the scalability and deployment challenges

faced by the above mentioned approaches, this paper presents
XPath for flow-level explicit path control. XPath addresses the
dynamic path setup challenge by giving a positive answer to the
following question: can we pre-install all desired routing paths
between any two nodes? Further, XPath shows that we can pre-
install all these paths using the destination IP based forwarding
TCAM tables of commodity switches.1
One cannot enumerate all possible paths in a DCN as the

number can be extremely large. However, we observe that
DCNs (e.g., [3]–[5], [19], [20], [22]) do not intend to use all
possible paths but a set of desired paths that are sufficient
to exploit the topology redundancy (Section II-B). Based on
this observation, XPath focuses on pre-installing these desired
paths in this paper. Even though, the challenge is that the sheer
number of desired paths in large DCNs is still large, e.g., a
Fattree has over paths among ToRs (Top-of-Rack
switches), exceeding the size of IP table with 144 K entries, by
many magnitudes.
To tackle the above challenge, we introduce a two-step com-

pression algorithm, i.e., paths to path sets aggregation and path
ID assignment for prefix aggregation, which is capable of com-
pressing a large number of paths to a practical number of routing
entries for commodity switches (Section III).
To show XPath's scalability, we evaluate it on various well-

known DCNs (Section III-C). Our results suggest that XPath
effectively expresses tens of billions of paths using only tens
of thousands of routing entries. For example, for Fattree(64),
we pre-install 4 billion paths using K entries2; for Hy-
perX(4,16,100), we pre-install 17 billion paths using K
entries. With such algorithm, XPath easily pre-installs all de-
sired paths into IP LPM tables with 144 K entries, while still
reserving space to accommodate more paths.

1The recent advances in switching chip technology make it ready to support
144K entries in IP LPM (Longest Prefix Match) tables of commodity switches
(e.g., [2], [26]).

2The largest routing table size among all the switches.

1063-6692 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

To demonstrate XPath's deployability, we implement it on
both Windows and Linux platforms under the umbrella of
SDN, and deploy it on a 3-layer Fattree testbed with 54 servers
(Section IV). Our experience shows that XPath can be readily
implemented with existing commodity switches. Through basic
experiments, we show that XPath handles failure smoothly.
To showcase XPath's utility, we integrate it into four appli-

cations (from provisioned IOPS [27] to Map-reduce) to enable
explicit path control and show that XPath directly benefits them
(Section V). For example, for provisioned IOPS application, we
use XPath to arrange explicit path with necessary bandwidth
to ensure the IOPS provisioned. For network update, we show
that XPath easily assists networks to accomplish switch up-
grades at zero traffic loss. For Map-reduce data shuffle, we use
XPath to identify non-contention parallel paths in accord with
the many-to-many shuffle pattern, reducing the shuffle time by
over 3 compared to ECMP.
In a nutshell, the primary contribution of XPath is that it pro-

vides a practical, readily-deployable way to pre-install all the
desired routing paths between any s-d pairs using existing com-
modity switches, so that applications only need to choose which
path to use without worrying about how to set up the path, and/or
the time cost or overhead of setting up the path.
To access XPath implementation scripts, please visit http://

sing.cse.ust.hk/projects/XPath.
The rest of the paper is organized as follows.

Section II overviews XPath. Section III elaborates XPath
algorithm and evaluates its scalability. Section IV implements
XPath and performs basic experiments. Section V integrates
XPath into applications. Section VI discusses the related work,
and Section VII concludes the paper.

II. MOTIVATION AND OVERVIEW

A. The Need for Explicit Path Control

Case #1: Provisioned IOPS: IOPS are input/output oper-
ations per second. Provisioned IOPS are designed to deliver
predictable, high performance for I/O intensive workloads,
such as database applications, that rely on consistent and fast
response times. Amazon EBS provisioned IOPS storage was
recently launched to ensure that disk resources are available
whenever you need them regardless of other customer ac-
tivity [27], [36]. In order to ensure provisioned IOPS, there
is a need for necessary bandwidth over the network. Explicit
path control is required for choosing an explicit path that can
provide such necessary bandwidth (Section V-A).
Case #2: Flow scheduling: Data center networks are built

with multiple paths [5], [19]. To use such multiple paths, state-
of-the-art forwarding in enterprise and data center environments
uses ECMP to statically stripe flows across available paths using
flow hashing. Because ECMP does not account for either cur-
rent network utilization or flow size, it can waste over 50%
of network bisection bandwidth [6]. Thus, to fully utilize net-
work bisection bandwidth, we need to schedule elephant flows
across parallel paths to avoid contention as in [6]. Explicit path
control is required to enable such fine-grained flow scheduling,

Fig. 1. Example of the desired paths between two servers/ToRs in a 4-radix
Fattree topology.

which benefits data intensive applications such as Map-reduce
(Section V-D).
Case #3: Virtual network embedding: In cloud computing,

virtual data center (VDC) with bandwidth guarantees is an ap-
pealing model for cloud tenants due to its performance pre-
dictability in shared environments [8], [21], [47]. To accurately
enforce such VDC abstraction over the physical topology with
constrained bandwidth, one should be able to explicitly dictate
which path to use in order to efficiently allocate and manage the
bandwidth on each path (Section V-C).
Besides the above applications, the need for explicit path con-

trol has permeated almost every corner of data center designs
and applications, from traffic engineering (e.g., [9], [24]), en-
ergy-efficiency (e.g., [23]), to network virtualization (e.g., [8],
[21], [47]), and so on. In Section V, we will study four of them.

B. XPath Overview

To enable explicit path control for general DCNs, XPath ex-
plicitly identifies an end-to-end path with a path ID and at-
tempts to pre-install all desired paths using IP LPM tables of
commodity switches, so that DCN applications can use these
pre-installed explicit paths easily without dynamically setting
up them. In what follows, we first introduce what the desired
paths are, and then overview the XPath framework.
Desired paths: XPath does not try to pre-install all possible

paths in a DCN because this is impossible and impractical. We
observe that when designing DCNs, operators do not intend to
use all possible paths in the routing. Instead, they use a set of
desired paths which are sufficient to exploit the topology redun-
dancy. This is the case for many recent DCN designs such as
[3]–[5], [19], [20], [22], [33]. For example, in a -radix Fat-
tree [5], they exploit parallel paths between any two ToRs
for routing (see Fig. 1 for desired/undesired paths on a 4-radix
Fattree); whereas in an -layer BCube [20], they use
parallel paths between any two servers. These sets of desired
paths have already contained sufficient parallel paths between
any s-d pairs to ensure good load-balancing and handle failures.
As the first step, XPath focuses on pre-installing all these de-
sired paths.
XPath framework: Fig. 2 overviews XPath. As many prior

DCN designs [13], [19], [20], [33], [42], in our implementation,
XPath employs a logically centralized controller, called XPath
manager, to control the network. The XPath manager has three
main modules: routing table computation, path ID resolution,
and failure handling. Servers have client modules for path ID
resolution and failure handling.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HU et al.: EXPLICIT PATH CONTROL IN COMMODITY DATA CENTERS 3

Fig. 2. The XPath system framework.

• Routing table computation: This module is the heart of
XPath. The problem is how to compress a large number
of desired paths (e.g., tens of billions) into IP LPM tables
with 144 K entries. To this end, we design a two-step com-
pression algorithm: paths to path sets aggregation (in order
to reduce unique path IDs) and ID assignment for prefix
aggregation (in order to reduce IP prefix based routing en-
tries). We elaborate the algorithm and evaluate its scala-
bility in Section III.

• Path ID resolution: In XPath, path IDs (in the format of
32-bit IP, or called routing IPs3) are used for routing to a
destination, whereas the server has its own IP for appli-
cations. This entails path ID resolution which translates
application IPs to path IDs. For this, the XPath manager
maintains an IP-to-ID mapping table. Before a new com-
munication, the source sends a request to the XPath man-
ager resolving the path IDs to the destination based on its
application IP. The manager may return multiple path IDs
in response, providing multiple paths to the destination for
the source to select. These path IDs will be cached locally
for subsequent communications, but need to be forgotten
periodically for failure handling. We elaborate this module
and its implementation in Section IV-A.

• Failure handling: Upon a link failure, the detecting de-
vices will inform the XPath manager. Then the XPath man-
ager will in turn identify the affected paths and update the
IP-to-ID table (i.e., disable the affected paths) to ensure
that it will not return a failed path to a source that performs
path ID resolution. The XPath source server handles fail-
ures by simply changing path IDs. This is because it has
cached multiple path IDs for a destination, if one of them
fails, it just uses a new live one instead. In the meanwhile,
the source will request, from the manager, the updated path
IDs to the destination. Similarly, upon a link recovery, the
recovered paths will be added back to the IP-to-ID table
accordingly. The source is able to use the recovered paths
once the local cache expires and a new path ID resolution
is performed.
We note that XPath leverages failure detection and re-
covery outputs to handle failures. The detailed failure

3We use routing IPs and path IDs interchangeably in this paper.

Fig. 3. Three basic relations between two paths.

detection and recovery mechanisms are orthogonal to
XPath, which focuses on explicit path control. In our
implementation (Section IV-B), we adopt a simple TCP se-
quence based approach for proof-of-concept experiments,
and we believe XPath can benefit from existing advanced
failure detection and recovery literatures [17], [29].

Remarks: In this paper, XPath focuses on how to pre-install
the desired paths, but it does not impose any constraint on how
to use the pre-installed paths. On top of XPath, we can either let
each server to select paths in a distributed manner, or employ
an SDN controller to coordinate path selection between servers
or ToRs in a centralized way (which we have taken in our im-
plementation of this paper). In either case, the key benefit is that
with XPath we do not need to dynamically modify the switches.
We also note that XPath is expressive and is able to pre-in-

stall all desired paths in large DCNs into commodity switches.
Thus XPath's routing table recomputation is performed infre-
quently, and cases such as link failures or switch upgrade [28]
are handled through changing path IDs rather than switch table
reconfiguration. However, table recomputation is necessary for
extreme cases like network wide expansion where the network
topology has fundamentally changed.

III. XPATH ALGORITHM AND SCALABILITY

We elaborate the XPath two-step compression algorithm in
Section III-A and III-B. Then, we evaluate it on various large
DCNs to show XPath's scalability in Section III-C.

A. Paths to Path Sets Aggregation (Step I)

The number of desired paths is large. For example, Fat-
tree(64) has over paths between ToRs, more than what a
32-bit IP/ID can express. To reduce the number of unique IDs,
we aggregate the paths that can share the same ID without
causing routing ambiguity into a non-conflict path set, identi-
fied by a unique ID.
Then, what kinds of paths can be aggregated? Without loss

of generality, two paths have three basic relations between each
other, i.e., convergent, disjoint, and divergent as shown in Fig. 3.
Convergent and disjoint paths can be aggregated using the same
ID, while divergent paths cannot. The reason is straightforward:
suppose two paths diverge from each other at a specific switch
and they have the same ID , then
there will be two entries in the routing table:
and . This clearly leads to ambi-
guity. Two paths can be aggregated without conflict if they do
not cause any routing ambiguity on any switch when sharing the
same ID.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 4. Different ways of path aggregation.

Problem 1: Given the desired paths of a
DCN, aggregate the paths into non-conflict path sets so that the
number of sets is minimized.
We find that the general problem of paths to non-conflict path

sets aggregation is NP-hard since it can be reduced from the
Graph vertex-coloring problem [43]. Thus, we resort to practical
heuristics.
Based on the relations in Fig. 3, we can aggregate the conver-

gent paths, the disjoint paths, or the mix into a non-conflict path
set as shown in Fig. 4. Following this, we introduce two basic
approaches for paths to path sets aggregation: convergent paths
first approach (CPF) and disjoint paths first approach (DPF).
The idea is simple. In CPF, we prefer to aggregate the conver-
gent paths into the path set first until no more convergent path
can be added in; Then we can add the disjoint paths, if exist,
into the path set until no more paths can be added in. In DPF,
we prefer to aggregate the disjoint paths into the path set first
and add the convergent ones, if exist, at the end.
The obtained CPF or DPF path sets have their own benefits.

For example, a CPF path set facilitates many-to-one commu-
nication for data aggregation because such an ID naturally de-
fines a many-to-one communication channel. A DPF path set,
on the other hand, identifies parallel paths between two groups
of nodes, and such an ID identifies a many-to-many communi-
cation channel for data shuffle. In practice, users may have their
own preferences to define customized path sets for different pur-
poses as long as the path sets are free of routing ambiguity.

B. ID Assignment for Prefix Aggregation (Step II)

While unique IDs can be much reduced through Step I, the
absolute value is still large. For example, Fattree(64) has over
2 million IDs after Step I. We cannot allocate one entry per ID
flatly with 144 K entries. To address this problem, we further
reduce routing entries using ID prefix aggregation. Since a DCN
is usually under centralized control and the IDs of paths can be
coordinately assigned, our goal of Step II is to assign IDs to
paths in such a way that they can be better aggregated using
prefixes in the switches.
1) Problem Description: We assign IDs to paths that traverse

the same egress port consecutively so that these IDs can be ex-
pressed using one entry via prefix aggregation. For example, in
Table I, 8 path sets go through a switch with 3 ports. A naïve
(bad) assignment will lead to an uncompressable routing table
with 7 entries. However, if we assign the paths that traverse the
same egress port with consecutive IDs (good), we can obtain a
compressed table with 3 entries as shown in Table II.
To optimize for a single switch, we can easily achieve the

optimal by grouping the path sets according to the egress ports

TABLE I
PATH SET ID ASSIGNMENT

TABLE II
COMPRESSED TABLE VIA ID PREFIX AGGREGATION

and encoding them consecutively. In this way, the number of
entries is equal to the number of ports. However, we optimize
for all the switches simultaneously instead of one.
Problem 2: Let be the path sets

after solving Problem 1. Assigning (or ordering) the IDs for
these path sets so that, after performing ID prefix aggregation,
the largest number of routing entries among all switches is
minimized.
In a switch, a block of consecutive IDs with the same egress

port can be aggregated using one entry.4 We call this an aggre-
gateable ID block . The number of such s indicates
routing states in the switch.5 Thus, we try to minimize the max-
imal number of s among all the switches through coordi-
nated ID assignment.
To illustrate the problem, we use a matrix to describe the

relation between path sets and switches. Suppose switches have
ports (numbered as), then we use

to indicate whether goes through switch ,
and if yes, which the egress port is. If , it means
goes through and the egress port is , and 0 otherwise

means does not appear on switch .

...
...

...
...

. . .
...

To assign IDs to path sets, we use
to denote that, with an ID assignment , the ID for

is (or ranks the -th among all the IDs). With , we actu-
ally permutate columns on to obtain . Column in

4The consecutiveness has local significance. Suppose path IDs 4, 6, 7 are on
the switch (all exit through port), but 5 are not present, then 4, 6, 7 are still
consecutive and can be aggregated as .

5Note that the routing entries can be further optimized using subnetting and
supernetting [18], in this paper, we just use s to indicate entries for sim-
plicity, in practice the table size can be even smaller.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HU et al.: EXPLICIT PATH CONTROL IN COMMODITY DATA CENTERS 5

corresponds to column in , i.e.,
.

...
...

...
...

. . .
...

Withmatrix , we can calculate the number of s on each
switch. To compute it on switch , we only need to sequentially
check all the elements on the -th row. If there exist sequential
non-zero elements that are the same, it means all these consecu-
tive IDs share the same egress port and belong to a same .
Otherwise, one more is needed. Thus, the total number of

s on switch is:

(1)

where if (0 is skipped), and 0 otherwise. With
(1), we can obtain the maximal number of s among all the
switches: , and our goal is to find
an that minimizes .
2) Solution: ID assignment algorithm: The above problem

is NP-hard as it can be reduced from the 3-SAT problem [39].
Thus, we resort to heuristics. Our practical solution is guided by
the following thought. Each switch has its own local optimal
assignment . But these individual local optimal assignments
may conflict with each other by assigning different IDs to a same
path set on different switches, causing an ID inconsistency on
this path set. To generate a global optimized assignment from
the local optimal assignments s, we can first optimally assign
IDs to path sets on each switch individually, and then resolve
the ID inconsistency on each path set in an incremental manner.
In other words, we require that each step of ID inconsistency
correction introduces minimal increase on .
Based on the above consideration, we introduce our

ID Assignment in Algorithm 1. The main idea behind the
algorithm is as follows.
• First, we assign IDs to path sets on each switch individ-
ually. We achieve the optimal result for each switch by
simply assigning the path sets that have the same egress
ports with consecutive IDs (lines 1–2).

• Second, we correct inconsistent IDs of each path set incre-
mentally. After the first step, the IDs for a path set on dif-
ferent switches may be different. For any path set having
inconsistent IDs, we resolve this as follows: we pick one
ID out of all the inconsistent IDs of this path set and let
other IDs be consistent with it provided that such cor-
rection leads to the minimal (lines 4–10). More
specifically, in lines 6–9, we try each of the inconsistent
IDs, calculate the associated if we correct the in-
consistency with this ID, and finally pick the one that leads
to the minimal . The algorithm terminates after we
resolve the ID inconsistencies for all the path sets.

In Fig. 5 we use a simple example to walk readers through
the algorithm. Given with 6 path sets across 3 switches, we
first encode each switch optimally. This is achieved by assigning
path sets having the same egress port with consecutive IDs. For
example, on switch , path sets exit from
and from , then we encode with IDs 1,
2, 3, 4 and with 5,6 respectively. We repeat this on and
, and achieve with . However, we have in-

consistent IDs (marked in red) for all path sets. For example,
has different IDs 1, 3, 1 on respectively. Then, we

start to correct the inconsistency for each path set. For with
inconsistent IDs 1, 3, 1, we try to correct with IDs 1 and 3 re-
spectively. To correct with ID 1, we exchange IDs 3 and 1 for

and on switch , and get . To correct with
ID 3, we exchange IDs 1 and 3 for and on switch and
, and get . We thus choose to correct with ID 3

and achieve as it has minimal . We perform
the same operation for the remaining path sets one by one and
finally achieve with . Therefore, the final ID
assignment is .
We note that the proposed algorithm is not optimal and has

room to improve. However, it is effective in compressing the
routing tables as we will show in our evaluation. One problem
is the time cost as it works on a large matrix. We intentionally
designed our Algorithm 1 to be of low time complexity, i.e.,

for the matrix . Even though, we find that
when the network scales to several thousands, it cannot return a
result within 24 hours (see Table IV). Worse, it is possible that

and or more for large DCNs. In such
cases, even a linear time algorithm can be slow, not to mention
any advanced algorithms.
Speedup with equivalence reduction: To speed up, we exploit

DCN topology characteristics to reduce the runtime of our algo-
rithm. The observation is that most DCN topologies are regular

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 5. Walk-through example on Algorithm 1: for any element in is the egress port and is the ID assigned to a path set on switch
, red/green s mean inconsistent/consistent IDs for path sets.

TABLE III
RESULTS OF XPATH ON THE 4 WELL-KNOWN DCNS

and many nodes are equivalent (or symmetric). These equiva-
lent nodes are likely to have similar numbers of routing states
for any given ID assignment, especially when the path sets are
symmetrically distributed. The reason is that for two equiva-
lent switches, if some path sets share a common egress port on
one switch, most of these path sets, if not all, are likely to pass
through a common egress port on another switch. As a result,
no matter how the path sets are encoded, the ultimate routing
entries on two equivalent switches tend to be similar. Thus, our
hypothesis is that, by picking a representative node from each
equivalence node class, we can optimize the routing tables for
all the nodes in the topology while spending much less time.
Based on the hypothesis, we improve the runtime of

Algorithm 1 with equivalence reduction. This speedup makes
no change to the basic procedure of Algorithm 1. Instead of
directly working on with rows, the key idea is to derive
a smaller with fewer rows from using equivalence
reduction, i.e., for all the equivalent nodes s in we only
pick one of them into , and then apply ID Assignment
on . To this end, we first need to compute the equivalence
classes among all the nodes, and there are many fast algorithms
available for this purpose [12], [16], [30]. This improvement
enables our algorithm to finish with much less time for various
well-known DCNs while still maintaining good results as we
will show subsequently.

C. Scalability Evaluation

Evaluation setting: We evaluate XPath's scalability on 4
well-known DCNs: Fattree [5], VL2 [19], BCube [20], and
HyperX [4]. Among these DCNs, BCube is a server-centric
structure where servers act not only as end hosts but also relay

nodes for each other. For the other 3 DCNs, switches are the
only relay nodes and servers are connected to ToRs at last
hop. For this reason, we consider the paths between servers in
BCube and between ToRs in Fattree, VL2 and HyperX.
For each DCN, we vary the network size (Table III). We con-

sider paths between any two ToRs in Fattree
paths between any two servers in BCube paths be-
tween any two ToRs in VL2 , and paths between
any two ToRs in HyperX .6 These paths do not enu-
merate all possible paths in the topology, however, they cover
all desired paths sufficient to exploit topology redundancy in
each DCN.
Our scalability experiments run on a Windows server with an

Intel Xeon E7-4850 2.00 GHz CPU and 256 GB memory.
Main results: Table III shows the results of XPath algorithm

on the 4 well-known DCNs, which demonstrates XPath's high
scalability. Here, for paths to path sets aggregation we used
CPF.
We find that XPath can effectively pre-install up to tens of bil-

lions of paths using tens of thousands of routing entries for very
large DCNs. Specifically, for Fattree(64) we express 4 billion
paths with 64 K entries; for BCube(8,4) we express 5 billion
paths with 47 K entries; for VL2(100,96,100) we express 575
million paths with 117 K entries; for HyperX(4,16,100) we ex-
press 17 billion paths with 36 K entries. These results suggest
that XPath can easily pre-install all desired paths into IP LPM

6DCNs use different parameters to describe their topologies. In Fattree
is the number of switch ports; in BCube is the number of switch

ports and is the BCube layers; in VL2 are the numbers
of aggregation/core switch ports and is the number of servers per rack; in
HyperX is the number of dimensions, is the number of switches
per dimension, and is the number of servers per rack.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HU et al.: EXPLICIT PATH CONTROL IN COMMODITY DATA CENTERS 7

TABLE IV
TIME COST OF ID ASSIGNMENT ALGORITHM WITH AND WITHOUT

EQUIVALENCE REDUCTION FOR THE 4 DCNS

tables with 144 K entries, and in the meanwhile XPath is still
able to accommodate more paths before reaching 144 K.
Understanding the ID assignment: The most difficult part

of the XPath compression algorithm is Step II (i.e., ID assign-
ment), which eventually determines if XPath can pre-install all
desired paths using 144 K entries. The last two columns of
Table III contrast the maximal entries before and after our coor-
dinated ID assignment for each DCN.
We find that XPath's ID assignment algorithm can efficiently

compress the routing entries by 2 to 32 for different DCNs.
For example, before our coordinated ID assignment, there are
over 2 million routing entries in the bottleneck switch (i.e., the
switch with the largest routing table size) for Fattree(64), and
after it, we achieve 64K entries via prefix aggregation. In the
worst case, we still compress the routing states from 240 K
to 117 K in VL2(100,96,100). Furthermore, we note that the
routing entries can be further compressed using traditional In-
ternet IP prefix compression techniques, e.g., [18], as a post-pro-
cessing step. Our ID assignment algorithm makes this prefix
compression more efficient.
We note that our algorithm has different compression effects

on different DCNs. As to the 4 largest topologies, we achieve
a compression ratio of for Fattree(64),

for HyperX(4,16,100), for
BCube(8,4), and for VL2(100,96,100) re-
spectively. We believe one important decisive factor for the
compression ratio is the density of the matrix . According to
(1), the number of routing entries is related to the non-zero ele-
ments in . The sparser the matrix, the more likely we achieve
better results. For example, in Fattree(64), a typical path set tra-
verses aggregation switches and core switches, while
in VL2(100,96,100), a typical path set traverses aggregation
switches and core switches. This indicates that
is much sparser than , which leads to the effect that the
compression on Fattree is better than that on VL2.
Time cost: In Table IV, we show that equivalence reduction

speeds up the runtime of the ID assignment algorithm. For ex-
ample, without equivalence reduction, it cannot return an output
within 24 hours when the network scales to a few thousands.
With it, we can get results for all the 4 DCNs within a few
minutes even when the network becomes very large. This is
acceptable because it is one time pre-computation and we do

Fig. 6. Effect of ID assignment algorithm with and without equivalence reduc-
tion for the 4 DCNs.

not require routing table re-computation as long as the network
topology does not change.
Effect of equivalence reduction: In Fig. 6, we compare the

performance of our ID assignment with andwithout equivalence
reduction. With equivalence reduction, we use (i.e., part of
) to perform ID assignment, and it turns out that the results

are similar to that without equivalence reduction. This partially
validates our hypothesis in Section III-B2. Furthermore, we note
that the algorithm with equivalence reduction can even slightly
outperform that without it in some cases. This is not a surprising
result since both algorithms are heuristic solutions to the orig-
inal problem.
Results on randomized DCNs:We note that most other DCNs

such as CamCube [3] and CiscoDCN [15] are regular and XPath
can perform as efficiently as above. However, in some recent
work such as Jellyfish [41] and SWDC [40], the authors also
discussed random graphs for DCN topologies. XPath's perfor-
mance is unpredictable for random graphs. But for all the Jelly-
fish topologies we tested, in the worst case, XPath still manages
to compress over 1.8 billion paths with less than 120K entries.
The runtime varies from tens of minutes to hours or more de-
pending on the degree of symmetry of the random graph.
CPF vs DPF: To make a comparison between CPF and

DPF (Section III-A), we study two compression ratios in
Fig. 7, i.e., maximum routing entries without compres-
sion to maximum routing entries after Step I compression
(MRE -0/MRE -1), and maximum routing entries after
Step I compression to maximum routing entries after Step II
compression (MRE -1/MRE -2). We make the following
observations.
First, as to the paths to path sets aggregation (Step I com-

pression), for all the 4 DCNs, CPF has a higher compression
ratio than DPF. One reason is that a CPF path set can possibly
hold more paths than a DPF path set. For example, in Fattree,
we observe that a CPF path set contains the convergent paths to
one destination node from all the other nodes as sources, while a
DPF path set contains the paths from half of the nodes as sources
to the other half as destinations.
Second, as to the ID assignment for prefix aggregation

(Step II compression), we find that CPF has a higher ratio for
Fattree and HyperX while DPF has a higher ratio for VL2. One
reason for this is that, as mentioned above, this compression
ratio has a correlation with the density of matrix . The path

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

102 103 104 105
100

101

102
Fattree

Number of nodes

C
om

pr
es

si
on

 R
at

io

MRE#−0/MRE#−1(CPF)
MRE#−0/MRE#−1(DPF)
MRE#−1/MRE#−2(CPF)
MRE#−1/MRE#−2(DPF)

101 102 103 104 105

2

4

6

8

10
BCube

Number of nodes

C
om

pr
es

si
on

 R
at

io

MRE#−0/MRE#−1(CPF)
MRE#−0/MRE#−1(DPF)
MRE#−1/MRE#−2(CPF)
MRE#−1/MRE#−2(DPF)

102 104 106

2

4

6

8

10
HyperX

Number of nodes

C
om

pr
es

si
on

 R
at

io

MRE#−0/MRE#−1(CPF)
MRE#−0/MRE#−1(DPF)
MRE#−1/MRE#−2(CPF)
MRE#−1/MRE#−2(DPF)

102 103 104 105 106
100

101

102
VL2

Number of nodes

C
om

pr
es

si
on

 R
at

io
MRE#−0/MRE#−1(CPF)
MRE#−0/MRE#−1(DPF)
MRE#−1/MRE#−2(CPF)
MRE#−1/MRE#−2(DPF)

Fig. 7. CPF vs DPF: the compression ratio of maximum routing entries
without compression to maximum routing entries after Step I compression
(MRE -0/MRE -1) and the compression ratio of maximum routing entries
after Step I compression to maximum routing entries after Step II compression
(MRE -1/MRE -2).

sets generated by CPF form a sparser in Fattree and HyperX,
while the path sets computed by DPF lead to a sparser in
VL2.
Third, the overall compression effect of CPF is better than

that of DPF for the 4 DCN topologies we have evaluated.
However, we believe there also exist topologies where DPF has
better performance.

IV. IMPLEMENTATION AND EXPERIMENTS

We have implemented XPath on both Windows and Linux
platforms, and deployed it on a 54-server Fattree testbed with
commodity switches for experiments. This paper describes the
implementation on Windows. In what follows, we first intro-
duce path ID resolution (Section IV-A) and failure handling
(Section IV-B). Then, we present testbed setup and basic XPath
experiments (Section IV-C).

A. Path ID Resolution

As introduced in Section II-B, path ID resolution addresses
how to resolve the path IDs (i.e., routing IPs) for a destination.
To achieve fault-tolerant path ID resolution, there are two issues
to consider. First, how to distribute the path IDs of a destination
to the source. The live paths to the destination may change, for
example, due to link failures. Second, how to choose the path
for a destination, and enforce such path selection in existing
networks.
These two issues look similar to the name resolution in ex-

isting DNS. In practice, it is possible to return multiple IPs for
a server, and balance the load by returning different IPs to the
queries. However, integrating the path ID resolution of XPath
into existing DNS may challenge the usage of IPs, as legacy ap-
plications (on socket communication) may use IPs to differen-
tiate the servers instead of routing to them. Thus, in this paper,
we develop a clean-slate XPath implementation on the XPath
manager and end servers. Each server has its original name and

Fig. 8. The software stacks of XPath on servers.

IP address, and the routing IPs for path IDs are not related to
DNS.
To enable path ID resolution, we implemented a XPath soft-

ware module on the end server, and a module on the XPath man-
ager. The end server XPath software queries the XPath man-
ager to obtain the updated path IDs for a destination. The XPath
manager returns the path IDs by indexing the IP-to-ID mapping
table. From the path IDs in the query response, the source se-
lects one for the current flow, and caches all (with a timeout) for
subsequent communications.
To maintain the connectivity to legacy TCP/IP stacks, we de-

sign an IP-in-IP tunnel based implementation. The XPath soft-
ware encapsulates the original IP packets within an IP tunnel:
the path ID is used for the tunnel IP header and the original IP
header is the inner one. After the tunnel packets are decapsu-
lated, the inner IP packets are delivered to destinations so that
multi-path routing by XPath is transparent to applications. Since
path IDs in Fattree end at the last hop ToR, the decapsulation
is performed there. The XPath software may switch tunnel IP
header to change the paths in case of failures, while for applica-
tions the connection is not affected. Such IP-in-IP encapsulation
also eases VM migration as VM can keep the original IP during
migration.
We note that if VXLAN [44] or NVGRE [34] is introduced

for tenant network virtualization, XPath IP header needs to be
the outer IP header and we will need 3 IP headers which looks
awkward. In the future, wemay consider more efficient and con-
solidated packet format. For example, we may put path ID in the
outer NVGRE IP header and the physical IP in NVGRE GRE
Key field. Once the packet reaches the destination, the host OS
then switches the physical IP and path ID.
In our implementation, the XPath software on end servers

consists of two parts: a Windows Network Driver Interface
Specification (NDIS) filter driver in kernel space and a XPath
daemon in user space. The software stacks of XPath are shown
in Fig. 8. The XPath filter driver is between the TCP/IP and
the Network Interface Card (NIC) driver. We use the Windows
filter driver to parse the incoming/outgoing packets, and to
intercept the packets that XPath is interested in. The XPath
user mode daemon is responsible for path selection and packet
header modification. The function of the XPath filter driver is
relatively fixed, while the algorithm module in the user space
daemon simplifies debugging and future extensions.
In Fig. 8, we observe that the packets are transferred be-

tween the kernel and user space, which may degrade the per-
formance. Therefore, we allocate a shared memory pool by the
XPath driver. With this pool, the packets are not copied and both

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HU et al.: EXPLICIT PATH CONTROL IN COMMODITY DATA CENTERS 9

Fig. 9. Fattree(6) testbed with 54 servers. Each ToR switch connects 3 servers
(not drawn).

the driver and the daemon operate on the same shared buffer.We
tested our XPath implementation (with tunnel) and did not ob-
serve any visible impact on TCP throughput at Gigabit line rate.

B. Failure Handling

As introduced in Section II-B, when a link fails, the devices
on the failed link will notify the XPath manager. In our im-
plementation, the communication channel for such notification
is out-of-band. Such out-of-band control network and the con-
troller are available in existing production DCNs [46].
The path IDs for a destination server are distributed using a

query-response based model. After the XPath manager obtains
the updated link status, it may remove the affected paths or add
the recovered paths, and respond to any later query with the
updated paths.
For proof-of-concept experiments, we implemented a failure

detection method with TCP connections on the servers. In our
XPath daemon, we check the TCP sequence numbers and switch
the path ID once we detect that the TCP has retransmitted a
data packet after a TCP timeout. The motivation is that the TCP
connection is experiencing bad performance on the current path
(either failed or seriously congested) and the XPath driver has
other alternative paths ready for use. We note that this TCP
based approach is sub-optimal and there are faster failure de-
tection mechanisms such as BFD [17] or F10 [29] that can de-
tect failures in 30 s, which XPath can leverage to perform fast
rerouting (combining XPath with these advanced failure detec-
tion schemes is our future work). A key benefit of XPath is that
it does not require route re-convergence and is loop-free during
failure handling. This is because XPath pre-installs the backup
paths and there is no need to do table re-computation unless all
backup paths are down.

C. Testbed Setup and Basic Experiments

Testbed setup: We built a testbed with 54 servers connected
by a Fattree(6) network (as shown in Fig. 9) using commodity
Pronto Broadcom 48-port Gigabit Ethernet switches. On the
testbed, there are 18 ToR, 18 Agg, and 9 Core switches. Each
switch has 6 GigE ports. We achieve these 45 virtual 6-port
GigE switches by partitioning the physical switches. Each ToR
connects 3 servers; and the OS of each server isWindows Server
2008 R2 Enterprise 64-bit version. We deployed XPath on this
testbed for experimentation.
IP table configuration: On our testbed, we consider 2754 ex-

plicit paths between ToRs (25758 paths between end hosts).

Fig. 10. The CDF of path ID resolution time.

After running the two-step compression algorithm, the number
of routing entries for the switch IP tables are as follows, ToR:

, Agg: 48, and Core: 6. Note that the Fattree topology
is symmetric, the numbers of routing entries after our heuristic
are almost the same for the switches at the same layer, which
confirms our hypothesis in Section III-B2 that equivalent nodes
are likely to have similar numbers of entries.
Path ID resolution time: We measure the path ID resolution

time at the XPath daemon on end servers: from the time when
the query message is generated to the time the response from
the XPath manager is received. We repeat the experiment 4000
times and depict the CDF in Fig. 10. We observe that the 99-th
percentile latency is 4ms. The path ID resolution is performed
for the first packet to a destination server that is not found in the
cache, or cache timeout. A further optimization is to perform
path ID resolution in parallel with DNS queries.
XPath routing with and without failure: In this experiment,

we show basic routing of XPath, with and without link failures.
We establish 90 TCP connections from the 3 servers under ToR
T1 to the 45 servers under ToRs T4 to T18. Each source server
initiates 30 TCP connections in parallel, and each destination
server hosts two TCP connections. The total link capacity from
T1 is , shared by 90 TCP connections.
Given the 90 TCP connections randomly share 3 up links

from T1, the load should be balanced overall. At around 40 sec-
onds, we disconnect one link (T1 to A1). We use TCP sequence
based method developed in Section IV-B for automatic failure
detection and recovery in this experiment. We then resume the
link at time around 80 seconds to check whether the load is still
balanced. We log the goodput (observed by the application) and
show the results for three connections versus time in Fig. 11.
Since we find that the throughput of all 90 TCP connections are
very similar, we just show the throughput of one TCP connec-
tion for each source server.
We observe that all the TCP connections can share the links

fairly with and without failure.When the link fails, the TCP con-
nections traversing the failed link (T1 to A1) quickly migrate to
the healthy links (T1 to A2 and A3). When the failed link re-
covers, it can be reused on a new path ID resolution after the
timeout of the local cache. In our experiment, we set the cache
timeout value as 1 second. However, one can change this param-
eter to achieve satisfactory recovery time for resumed links. We
also run experiments for other traffic patterns, e.g., ToR-to-ToR
and All-to-ToR, and link failures at different locations, and find
that XPath works as expected in all cases.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 11. TCP goodput of three connections versus time on three phases: no
failure, in failure, and recovered.

Fig. 12. Pre-installation under XPath vs dynamic installation under OpenFlow
as packet/flow increases.

D. Pre-Installation Vs Dynamic Installation
In this experiment, we compare pre-installation using XPath

with dynamic installation using OpenFlow [10], [24] in terms of
supporting a large number of flows. For the experiment setting,
we continuously send out 40 KB-size TCP flows from a source
to a destination with 3 switches on the path. We vary destination
TCP ports to emulate different flows. For XPath, we pre-install
all routing entries of the desired paths into IP LPM tables of the
switches. For OpenFlow, it dynamically installs flow entries for
new flows into the generic flow tables of OpenFlow switches
via the controller during runtime.
We measured the average RTTs with the number of packets/

flows in Fig. 12. We make two observations: 1) Dynamic instal-
lation under OpenFlow has slightly higher average RTTs than
pre-installation under XPath. The reason is that, to set up a flow
on an -switch path, OpenFlow requires control packets
for flow entry installation, whereas XPath only requires
control packet for path ID resolution on end-host. 2) There is
an abrupt increase under OpenFlow when the flow count hits
1K (packets), while XPath maintains persistent low la-
tency. We note that our OpenFlow switch has 2K hardware for-
warding entries, when the hardware flow table is full, the new
flows will be automatically installed in the software forwarding
table, which is much slower [1]. Thus, when the flow count in-
creases to over 1K (about 2K rules installed7), the hardware flow
table becomes full. After that, any subsequent new flows will

7Note that each flow requires two OpenFlow rules for both directions.

Fig. 13. XPath utility case : we leverage XPath to make necessary band-
width easier to implement for provisioned IOPS.

enter the software flow table, which significantly inflates the for-
warding delay of the message.
We also implemented rule replacement algorithm in whichwe

let new flows replace the old ones in the hardware table when
it is full, and we observed bad performance as well. Specifi-
cally, we measure the dynamic rule installation time of Open-
Flow with 3 switches on the path using POX as the controller.
We find it takes over 9.6 ms to replace an old rule with a new
rule, i.e., the time from a new packet arrives at the switch until
a new rule is effectively working. In contrast, pre-installation
under XPath is not restricted by table size and its path ID reso-
lution time is relatively small—4ms at 99th percentile as mea-
sured in Section IV-C.
The takeaway of this experiment is that XPath complements

existing OpenFlow-based dynamic solutions, e.g., [24], [28], in
terms of explicit path control, and pre-installation under XPath
can maintain persistent low latency for a large number of flows.

V. XPATH APPLICATIONS

To showcase XPath's utility, we use it for explicit path sup-
port in four applications. The key is that, built on XPath, appli-
cations can freely choose which path to use without worrying
about how to set up the path and the time cost or overhead of
setting up the path. In this regard, XPath emerges as an interface
for applications to use explicit paths conveniently, but does not
make any choice on behalf of them.

A. XPath for Provisioned IOPS
In cloud services, there is an increasing need for provisioned

IOPS. For example, Amazon EBS enforces provisioned IOPS
for instances to ensure that disk resources can be accessed
with high and consistent I/O performance whenever you need
them [27]. To enforce such provisioned IOPS, it should first
provide necessary bandwidth for the instances [11]. In this
experiment, we show XPath can be easily leveraged to use the
explicit path with necessary bandwidth.
As shown in Fig. 13(a), we use background UDP flows

to stature the ToR-Agg links and leave the remaining band-
width on 3 paths (and) between X-Y as 300 Mpbs,
100 Mbps, and 100 Mbps respectively. Suppose there is a
request for provisioned IOPS that requires 500 Mbps necessary
bandwidth (The provisioned IOPS is about 15000 and the
chunk size is 4 KB.). We now leverage XPath and ECMP
to write 15 GB data (million chunks) through 30 flows

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HU et al.: EXPLICIT PATH CONTROL IN COMMODITY DATA CENTERS 11

from X to Y, and measure the achieved IOPS respectively. The
storage we used for the experiment is Kingston 120G
SSD, and the I/O operations on the storage are sequential read
and sequential write.
From Fig. 13(c), it can be seen that using ECMP we cannot

provide the necessary bandwidth between X-Y for the provi-
sioned IOPS although the physical capacity is there. Thus, the
actual achieved IOPS is only 4547, and the write under ECMP
takes much longer time than that under XPath as shown in
Fig. 13(c). This is because ECMP performs random hashing
and cannot specify the explicit path to use, hence it cannot
accurately make use of the remaining bandwidth on each of
the multiple paths for end-to-end bandwidth provisioning. In
contrast, XPath can be easily leveraged to provide the required
bandwidth due to its explicit path control. With XPath, we
explicitly control how to use the three paths and accurately pro-
vide 500 Mbps necessary bandwidth, achieving 15274 IOPS.

B. XPath for Network Updating

In production data centers, DCN update occurs fre-
quently [28]. It can be triggered by the operators, applications
and various networking failures. zUpdate [28] is an application
that aims to perform congestion-free network-wide traffic
migration during DCN updates with zero loss and zero human
effort. In order to achieve its goal, zUpdate requires explicit
routing path control over the underlying DCNs. In this experi-
ment, we show how XPath assists zUpdate to accomplish DCN
update and use a switch firmware upgrade example to show
how traffic migration is conducted with XPath.
In Fig. 14(a), initially we assume 4 flows (and)

on three paths (and). Then we move away from
switch to do a firmware upgrade for switch . However,
neither nor has enough spare bandwidth to accommodate

at this point of time. Therefore we need to move from
to in advance. Finally, after the completion of firmware up-
grade, we move all the flows back to original paths. We leverage
XPath to implement the whole movement.
In Fig. 14(b), we depict the link utilization dynamics. At time
, when is moved from to , the link utilization of

drops from 0.6 to 0.4 and the link utilization of increases
from 0.7 to 0.9. At time , when is moved from to ,
the link utilization of drops from 0.5 to 0 and the link utiliza-
tion of increases from 0.4 to 0.9. The figure also shows the
changes of the link utilization at time and when moving

back to and back to . It is easy to see that with the
help of XPath, and see no congestion and DCN up-
date proceeds smoothly without loss.

C. Virtual Network Enforcement With XPath

In cloud computing, virtual data center (VDC) abstraction
with bandwidth guarantees is an appealing model due to its per-
formance predictability in shared environments [8], [21], [47].
In this experiment, we showXPath can be applied to enforce vir-
tual networks with bandwidth guarantees. We assume a simple
SecondNet-based VDCmodel with 4 virtual links, and the band-
width requirements on them are 50 Mbps, 200 Mbps, 250 Mbps
and 400 Mbps respectively as shown in Fig. 15(a). We then

Fig. 14. XPath utility case #2: we leverage XPath to assist zUpdate [28] to
accomplish DCN update with zero loss. (a) Path : T1 A1 T3; :
T1 A2 T3; : T1 A3 T3, (b) Time : move from to :
move from to : move from to : move from
to .

Fig. 15. XPath utility case : we leverage XPath to accurately enforce VDC
with bandwidth guarantees.

leverage XPath's explicit path control to embed this VDC into
the physical topology.
In Fig. 15(b), we show that XPath can easily be employed

to use the explicit paths in the physical topology with enough
bandwidth to embed the virtual links. In Fig. 15(c), we measure
the actual bandwidth for each virtual link and show that the
desired bandwidth is accurately enforced. However, we found
that ECMP cannot be used to accurately enable this because
ECMP cannot control paths explicitly.

D. Map-Reduce Data Shuffle With XPath

In Map-reduce applications, many-to-many data shuffle be-
tween the map and reduce stages can be time-consuming. For
example, Hadoop traces from Facebook show that, on average,
transferring data between successive stages accounts for 33% of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 16. XPath utility case : we leverage XPath to select non-conflict paths
to speed up many-to-many data shuffle.

the running times of jobs [14]. Using XPath, we can explicitly
express non-conflict parallel paths to speed up such many-to-
many data shuffle. Usually, for a -to- data shuffle, we can use

path IDs to express the communication patterns. The
shuffle patterns can be predicted using existing techniques [35].
In this experiment, we selected 18 servers in two pods of the

Fattree to emulate a 9-to-9 data shuffle by letting 9 servers in
one pod send data to 9 servers in the other pod. We varied the
data volume from 40 G to over 400 G.We compared XPath with
ECMP.
In Fig. 16, it can be seen that by using XPath for data shuffle,

we can perform considerably better than randomized ECMP
hash-based routing.More specifically, it reduces the shuffle time
by over 3 for most of the experiments. The reason is that
XPath's explicit path IDs can be easily leveraged to arrange
non-interfering paths for shuffling, thus the network bisection
bandwidth is fully utilized for speedup.

VI. RELATED WORK

The key to XPath is explicit path control. We note that many
other approaches such as source routing [38],MPLS [37], Open-
Flow [31] and the like, can also enable explicit path control.
However, each of them has its own limitation.
OpenFlow [31] has been used in many recent proposals

(e.g., [6], [9], [23], [24], [28]) to enable explicit path control.
OpenFlow can establish fine-grained explicit routing path by
installing flow entries in the switches via the OpenFlow con-
troller. But in current practice, there are still challenges such as
small flow table size and dynamic flow entries setup that need
to be solved. For example, the on-chip OpenFlow forwarding
rules in commodity switches are limited to a small number,
typically 1–4 K. To handle this limitation, recent solutions, e.g.,
[24], dynamically change, based on traffic demand, the set of
live paths available in the network at different times through
dynamic flow table configurations, which could potentially in-
troduce non-trivial implementation overhead and performance
degradation. XPath addresses such challenge by pre-installing
all desired paths into IP LPM tables. In this sense, XPath
complements existing OpenFlow-based solutions in terms of
explicit path control, and in the meanwhile, the OpenFlow
framework may still be able to be used as a way for XPath to
pre-configure the switches and handle failures.
Source routing is usually implemented in software and slow

paths, and not supported in the hardware of the data center

switches, which typically only support destination IP based
routing. Compared to source routing, XPath is readily deploy-
able without waiting for new hardware capability; and XPath's
header length is fixed while it is variable for source routing
with different path lengths.
With MPLS, paths can also be explicitly set up before data

transmission using MPLS labels. However, XPath is different
from MPLS in following aspects. First, because MPLS labels
only have local significance, it requires a dynamic Label Dis-
tribution Protocol (LDP) for label assignments. In contrast,
XPath path IDs are unique, and we do not need such a signaling
protocol. Second, MPLS is based on exact matching (EM)
and thus MPLS labels cannot be aggregated, whereas XPath
is based on longest prefix matching (LPM) and enables more
efficient routing table compression. Furthermore, MPLS is typ-
ically used only for traffic engineering in core networks instead
of application-level or flow-level path control. In addition, it
is reported [7], [24] that the number of tunnels that existing
MPLS routers can support is limited.
SPAIN [32] builds a loop-free tree per VLAN and utilizes

multiple paths across VLANs between two nodes, which in-
creases the bisection bandwidth over the traditional Ethernet
STP. However, SPAIN does not scale well because each host
requires an Ethernet table entry per VLAN. Further, its network
scale and path diversity are also restricted by the number of
VLANs supported by Ethernet switches, e.g., 4096.
PAST [42] implements a per-address spanning tree routing

for data center networks using the MAC table. PAST supports
more spanning trees than SPAIN, but PAST does not support
multi-paths between two servers, because a destination has only
one tree. This is decided by the MAC table size and its exact
matching on flat MAC addresses.
Both SPAIN and PAST are L2 technologies. Relative to

them, XPath builds on L3 and harnesses the fast-growing IP
LPM table of commodity switches. One reason we choose IP
instead of MAC is that it allows prefix aggregation. It is worth
noting that our XPath framework contains both SPAIN and
PAST. XPath can express SPAIN's VLAN or PAST's spanning
tree using CPF, and it can also arrange paths using DPF and
perform path ID encoding and prefix aggregation for scalability.
Finally, there are various DCN routing schemes that come

with specific topologies, such as those introduced in Fattree [5],
PortLand [33], BCube [20], VL2 [19], ALIAS [45], and so on.
For example, PortLand [33] leverages Fattree topology to as-
sign hierarchical Pseudo-MACs to end hosts, while VL2 [19]
exploits folded Clos network to allocate location-specific IPs to
ToRs. These topology-aware addressing schemes generally ben-
efit prefix aggregation and can lead to very small routing tables,
however they do not enable explicit path control and still rely
on ECMP [33] or Valiant Load Balancing (VLB) [19] for traffic
spreading over multiple paths. Relative to them, XPath enables
explicit path control for general DCN topologies.

VII. CONCLUSION
XPath is motivated by the need for explicit path control in

DCN applications. At its very core, XPath uses a path ID to
identify an end-to-end path, and pre-installs all the desired path
IDs between any s-d pairs into IP LPM tables of commodity

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HU et al.: EXPLICIT PATH CONTROL IN COMMODITY DATA CENTERS 13

switches using a two-step compression algorithm. Through
extensive evaluation and implementation, we show that XPath
is scalable and easy to implement with existing commodity
switches. Finally, we used testbed experiments to show that
XPath can directly benefit many popular DCN applications.

ACKNOWLEDGMENT

C. Lan and H. Zhao were interns with Microsoft Research
Asia when they worked on this project. The authors would like
to thank their shepherd G. Porter and the anonymous NSDI
and IEEE/ACMTRANSACTIONS ONNETWORKING reviewers for
their feedback and suggestions.

REFERENCES
[1] Pica8, “Pica8-datasheet-48x1gbe-p3290-p3295,” [Online]. Available:

http://www.pica8.com/
[2] Arista, “Arista 7050QX,” 2013 [Online]. Available: http://

www.aristanetworks.com/media/system/pdf/Datasheets/7050QX-
32_Datasheet.pdf

[3] H. Abu-Libdeh, P. Costa, A. Rowstron, G. O'Shea, and A. Donnelly,
“Symbiotic routing in future data centers,” in Proc. SIGCOMM, 2010,
pp. 51–62.

[4] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber,
“HyperX: Topology, routing, and packaging of efficient large-scale net-
works,” in Proc. SC, 2009, Art. no. 41.

[5] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in Proc. ACM SIGCOMM, 2008, pp.
63–74.

[6] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A.
Vahdat, “Hedera: Dynamic flow scheduling for data center networks,”
in Proc. NSDI, 2010, p. 19.

[7] D. Applegate andM. Thorup, “Load optimalMPLS routingwith
labels,” in Proc. IEEE INFOCOM, pp. 555–565.

[8] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards pre-
dictable datacenter networks,” inProc. SIGCOMM, 2011, pp. 242–253.

[9] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine
grained traffic engineering for data centers,” in Proc. CoNEXT, 2010,
Art. no. 8.

[10] M. Canini, D. Venzano, P. Perešíni, D. Kostić, and J. Rexford, “ANICE
way to test openflow applications,” in Proc. NSDI, 2012, p. 10.

[11] Amazon Web Services, “I/O characteristics,” [Online]. Available:
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-io-
characteristics.html

[12] K. Chen et al., “Generic and automatic address configuration for data
centers,” in Proc. SIGCOMM, 2010, pp. 39–50.

[13] K. Chen et al., “OSA: An optical switching architecture for data center
networks with unprecedented flexibility,” in Proc. NSDI, 2012, p. 18.

[14] M. Chowdhury, M. Zaharia, J. Ma, M. Jordan, and I. Stoica, “Man-
aging data transfers in computer clusters with orchestra,” in Proc. SIG-
COMM, 2011, pp. 98–109.

[15] Cisco, “Data center: Load balancing data center services,” 2004.
[16] P. T. Darga, K. A. Sakallah, and I. L. Markov, “Faster symmetry dis-

covery using sparsity of symmetries,” in Proc. 45th DAC, 2008, pp.
149–154.

[17] Cisco, “Bidirectional forwarding detection,” 2006 [Online]. Available:
http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/fs_bfd.
html

[18] R. Draves, C. King, S. Venkatachary, and B. Zill, “Constructing op-
timal IP routing tables,” in Proc. IEEE INFOCOM, 1999, pp. 88–97.

[19] A. Greenberg et al., “VL2: A scalable and flexible data center net-
work,” in Proc. ACM SIGCOMM, 2009, pp. 51–62.

[20] C. Guo et al., “BCube: A high performance, server-centric network
architecture for modular data centers,” in Proc. SIGCOMM, 2009, pp.
63–74.

[21] C. Guo et al., “SecondNet: A data center network virtualization archi-
tecture with bandwidth guarantees,” in Proc. CoNEXT, 2010, Art. no.
15.

[22] C. Guo et al., “DCell: A scalable and fault-tolerant network structure
for data centers,” in Proc. SIGCOMM, 2008, pp. 75–86.

[23] B. Heller et al., “ElasticTree: Saving energy in data center networks,”
in Proc. NSDI, 2010, p. 17.

[24] C.-Y. Hong et al., “Achieving high utilization with software-driven
WAN,” in Proc. ACM SIGCOMM, 2013, pp. 15–26.

[25] C.Hopps, “Analysis of an equal-cost multi-path algorithm,” RFC 2992,
2000.

[26] Broadcom, “Broadcom Strata XGS Trident II,” [Online]. Available:
http://www.broadcom.com

[27] Amazon Web Services, “Provisioned I/O-EBS,” [Online]. Available:
https://aws.amazon.com/ebs/details

[28] H. Liu et al., “zUpdate: Updating data center networks with zero loss,”
in Proc. ACM SIGCOMM, 2013, pp. 411–422.

[29] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson, “F10: A
fault-tolerant engineered network,” in Proc. NSDI, 2013, pp. 399–412.

[30] B. D. McKay, “Practical graph isomorphism,” Congressus Numer.,
1981.

[31] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, 2008.

[32] J. Mudigonda, P. Yalagandula, and J. Mogul, “SPAIN: COTS data-
center ethernet for multipathing over arbitrary topologies,” in Proc.
NSDI, 2010, p. 18.

[33] R. N. Mysore et al., “PortLand: A scalable fault-tolerant layer 2 data
center network fabric,” in Proc. SIGCOMM, 2009, pp. 39–50.

[34] “NVGRE,” [Online]. Available: http://en.wikipedia.org/wiki/NVGRE
[35] Y. Peng et al., “HadoopWatch: A first step towards comprehensive

traffic forecasting in cloud computing,” in Proc. IEEE INFOCOM,
2014, pp. 19–27.

[36] Amazon Web Services, “Announcing provisioned IOPS for Amazon
EBS,” [Online]. Available: http://aws.amazon.com/about-aws/whats-
new/2012/07/31/announcing-provisioned-iops-for-amazon-ebs/

[37] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label
switching architecture,” RFC 3031, 2001.

[38] “Source routing,” [Online]. Available: http://en.wikipedia.org/wiki/
Source_routing

[39] “Boolean satisfiability problem,” [Online]. Available: http://en.
wikipedia.org/wiki/Boolean_satisfiability_problem

[40] J.-Y. Shin, B. Wong, and E. G. Sirer, “Small-world datacenters,” in
Proc. ACM SoCC, 2011, Art. no. 2.

[41] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Net-
working data centers randomly,” in Proc. NSDI, 2012, p. 17.

[42] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter, “PAST: Scal-
able ethernet for data centers,” in Proc. CoNEXT, 2012, pp. 49–60.

[43] “Graph vertex coloring,” [Online]. Available: http://en.wikipedia.org/
wiki/Graph_coloring

[44] “VXLAN,” [Online]. Available: http://en.wikipedia.org/wiki/Vir-
tual_Extensible_LAN

[45] M. Walraed-Sullivan et al., “ALIAS: Scalable, decentralized label as-
signment for data centers,” in Proc. SoCC, 2011, Art. no. 6.

[46] X. Wu et al., “NetPilot: Automating datacenter network failure mitiga-
tion,” in Proc. SIGCOMM, 2012, pp. 419–430.

[47] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The only constant is
change: Incorporating time-varying network reservations in data cen-
ters,” in Proc. SIGCOMM, 2012, pp. 199–210.

Shuihai Hu received the B.S. degree in computer sci-
ence from University of Science and Technology of
China, Hefei, China, in 2013, and is currently pur-
suing the Ph.D. degree in computer science at Hong
Kong University of Science and Technology, Hong
Kong. His current research interests are in the area of
data center networks.

Kai Chen is an Assistant Professor with the De-
partment of Computer Science and Engineering,
Hong Kong University of Science and Technology,
Hong Kong. He received a Ph.D. degree in computer
science from Northwestern University, Evanston, IL
in 2012. His research interest includes networked
systems design and implementation, data center
networks, and cloud computing.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

Haitao Wu received his Bachelor degree in
telecomm. engineering and his Ph.D. in telecommu-
nication and information systems in 1998 and 2003
respectively, both from Beijing University of Post
and Telecommunications (BUPT). He was a member
of IEEE. He joined the Wireless and Networking
Group, Microsoft Research Asia (MSRA), in 2003.
He was transferred to Microsoft Azure product group
on data center networking in 2014. His research
interests include datacenter networks, QoS, TCP/IP,
P2P, and wireless networks.

Wei Bai received the B.E. degree in information se-
curity from Shanghai Jiao Tong University, China, in
2013. He is currently pursuing the Ph.D. degree in
computer science in Hong Kong University of Sci-
ence and Technology. His current research interests
are in the area of data center networks.

Chang Lan received the B.Eng. degree in computer
science from Tsinghua University, Beijing, China,
in 2013. He is currently working towards the Ph.D.
degree in computer science at the University of Cal-
ifornia, Berkeley, CA, USA. His research focus on
software defined networking and network function
virtualization, and he also works on security and
privacy.

Hao Wang is a Ph.D. student in Department of
Electrical and Computer Engineering, University of
Toronto. He received his B.E. degree in information
security and M.E. degree in software engineering
both from Shanghai Jiao Tong University in 2012
and 2015 respectively. His research interests include
load balancing schemes in DCN and distributed
computing optimization.

Hongze Zhao is a Ph.D. student at Duke University,
working with Prof. Xiaowei Yang. His research in-
terest includes computer networks, security and net-
work diagnostics. He also enjoys writing code and
learning new programming techniques.

Chuanxiong Guo is a Principal Software Engi-
neering Manager at Microsoft Azure Networking.
Before that, he was a Senior Researcher in the Wire-
less and Networking Group of Microsoft Research
Asia (MSRA). He received his Ph.D. degree from
the Institute of Communications Engineering in
Nanjing, China. His areas of interest include: net-
worked systems design and implementation at scale,
data center networking, network troubleshooting,
network security, networking support for operating
systems and applications, and Cloud Computing. He

is currently working on data center networking and Cloud Computing.

