
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

Accelerating Rule-matching Systems
with Learned Rankers

Zhao Lucis Li, University of Science and Technology China;
Chieh-Jan Mike Liang and Wei Bai, Microsoft Research;

Qiming Zheng, Shanghai Jiao Tong University; Yongqiang Xiong, Microsoft Research;
Guangzhong Sun, University of Science and Technology China

https://www.usenix.org/conference/atc19/presentation/li-zhao

Accelerating Rule-matching Systems with Learned Rankers

Zhao Lucis Li?‡ Chieh-Jan Mike Liang‡ Wei Bai‡ Qiming Zheng†‡

Yongqiang Xiong‡ Guangzhong Sun?
?University of Science and Technology of China ‡Microsoft Research †Shanghai Jiao Tong University

Abstract
Infusing machine learning (ML) and deep learning (DL)

into modern systems has driven a paradigm shift towards
learning-augmented system design. This paper proposes the
learned ranker as a system building block, and demonstrates
its potential by using rule-matching systems as a concrete
scenario. Specifically, checking rules can be time-consuming,
especially complex regular expression (regex) conditions. The
learned ranker prioritizes rules based on their likelihood of
matching a given input. If the matching rule is successfully
prioritized as a top candidate, the system effectively achieves
early termination. We integrated the learned rule ranker as a
component of popular regex matching engines: PCRE, PCRE-
JIT, and RE2. Empirical results show that the rule ranker
achieves a top-5 classification accuracy at least 96.16%, and
reduces the rule-matching system latency by up to 78.81% on
a 8-core CPU.

1 Introduction

Machine learning (ML) and deep learning (DL) bring new
possibilities to modern system designs [9, 15, 17, 23, 24],
which traditionally rely on human-written heuristics. Under
the learning-augmented design, system logic is implemented
with both heuristics and ML/DL to better address performance
bottlenecks. Such design has the following advantages. First,
compared to heuristics, ML/DL has been shown to excel in
learning complex data patterns to enable classification, regres-
sion and prediction. Second, while traditional heuristics are
designed to be general purpose and computation-efficient, sys-
tems such as web services can have a workload that is highly
dynamic and scenario-specific. Adapting to workload charac-
teristics can enable highly optimized algorithmic operations
and system components.

This work was done when Zhao Lucis Li and Qiming Zheng were interns
at Microsoft Research. Chieh-Jan Mike Liang is the corresponding author.

However, formulating ML/DL tasks into system building
blocks is non-trivial. Given that ML/DL is stochastic in na-
ture, inference uncertainties should not impact the system
correctness. And, inference should not impose a significant
resource overhead on the end-to-end system performance. Re-
cently, the industry has had success in using learning-driven
space exploration as a system building block, for scenarios
such as system configuration tuning [9, 17, 23]. Building on
this success, this paper explores the potential and feasibility
of another building block for learning-augmented systems –
the learned ranker.

Particularly, we use rule-matching systems as a concrete
scenario for learned rankers. One common task of rule-
matching systems is to match the given input to one rule
in the ruleset as fast as possible, and the performance bot-
tlenecks come from two observations. For rulesets that do
not impose a mandatory ordering on rule checking, the naïve
practice of sequentially going through rules can result in pro-
cessing many unnecessary rules. The problem exacerbates
when we consider that rules can have non-trivial conditions
written in regular expressions (regex). Since regex matching
engines typically rely on either deterministic finite automa-
ton (DFA) or non-deterministic finite automaton (NFA), its
overhead largely depends on the length and complexity of
regex patterns and inputs. In the worst case, the backtracking
problem can result in O(2n) time complexity for an input
string of size n [13], rather than the expected O(n).

To reduce the rule matching latency, common optimization
techniques include string-matching pre-filters [7, 12], just-in-
time compilation [4], and specialized hardware-based regex
acceleration [20, 25]. The learned ranker enables a different
but complementary technique – after the string-matching pre-
filter removes unlikely inputs, it performs per-input rule priori-
tization for the regex matching engine, based on the likelihood
of a given input to match each rule. Conceptually, if the match-
ing rule can be prioritized as one of the top candidates, the
rule-matching system effectively achieves early-termination,
thus minimizing unnecessary rule checking.

Designing learning-augmented systems with the learned

USENIX Association 2019 USENIX Annual Technical Conference 1041

Figure 1: A learning-augmented design of rule-matching sys-
tems. Complementing existing acceleration techniques, we
introduce a learned rule ranker to dynamically prioritize rules
for each input. The goal is to minimize unnecessary rule pro-
cessing and achieve early-termination.

ranker as a building block should go beyond simply select-
ing the most accurate ML/DL model – although the ranker
helps to reduce the computation load for other system compo-
nents, it is crucial to balance the trade off between inference
accuracy and cost, with respect to the end-to-end system per-
formance. To evaluate the benefits of the learned ranker as
a building block for learning-augmented systems, we have
integrated it into popular regex matching engines: PCRE [3],
PCRE-JIT [4], and RE2 [5]. We benchmark with two publicly
available rulesets: ModSecurity CRS [2] and Snort [6]. Empir-
ical results show that the learning-augmented design reduces
the rule-matching system latency by as much as 78.81%; in
particular, the learned rule ranker can achieve a top-5 ranking
accuracy at least 96.16%, and this reduces the average num-
ber of per-input regex matching invocations by as much as
98.54%.

2 System Overview

Figure 1 illustrates the learning-augmented design of rule-
matching systems. The rule ranker exploits the fact that many
rulesets do not fix a mandatory ordering of rules, and it dy-
namically re-orders rules according to how likely they would
match the given input. If the ranker successfully prioritizes
the matching rule among the top N candidates, then the regex
matching engine can effectively early-terminate after check-
ing at most N rules. The figure also illustrates that the learned
rule ranker can complement many existing optimization solu-
tions. First, there is a string-matching pre-filter that first re-
moves inputs unlikely to match any rule [7,12]. Second, there
are efforts on reducing the regex matching engine latency,
e.g., PCRE’s just-in-time compilation [4] and hardware-based
regex acceleration [20, 25].

The rule ranker can take different realizations and ML/DL
models. While ranking accuracy is a primary consideration
in designing the ranker, achieving high accuracy typically
comes with the cost of computation overhead and latency.
This trade-off is crucial, as each input incurs the inference
cost. Therefore, it is possible that a ranker does not speed
up the overall system performance – in the context of rule-
matching systems, these worst cases happen when a given

input triggers a large amount of rule processing. Possible
reasons include (1) the string-matching pre-filter fails to first
remove unlikely inputs, or (2) the ranker fails to optimally
prioritize rules.

2.1 Strawman Solutions for Rule Ranker

Static and heuristics-based solutions. If the overall system
workload exhibits a long tail in the rule hit distribution (e.g.,
some rules account for a majority of matches), then both static
and heuristics-based solutions can be effective. In particular,
for cases where system workloads are assumed to rarely ex-
hibit temporal dynamics, system operators can sort rules by
statistically counting the number of rule hits in historical
logs. Otherwise, heuristics such as least recently used (LRU)
and least frequently used (LFU) can be used to improve the
adaptability to sporadically temporal dynamics.

While both strawman solutions are simple, they can be sub-
optimal due to the following reasons. First, while inputs are
independent, these solutions rank rules based on the historical
hit distribution, rather than any features of the current in-
put. Second, they are suitable only for scenarios with known
or long-tailed rule hit distributions. For cases and systems
where different inputs can match different rules, LRU and
LFU might not work well if the principle of locality does not
hold.

Classification-based solutions. The rule-matching problem
can be formulated as a multi-class classification problem in
the machine learning domain. Specifically, assuming each rule
is one class, we aim to predictively classify an input and rank
rules by the likelihood score of each class. One widely-used
non-DL classification technique is the logistic regression (LR).
While being used traditionally for single-class classification,
LR can be extended for multi-class classification through
the one-vs-rest strategy. Unlike linear regression and support
vector machine (SVM), LR is able to output probabilistic
values, rather than binary answers. Probabilistic values are
useful in comparing the relative likelihood of rules in a ruleset.

As a strawman solution, LR can be sub-optimal due to the
following reasons. First, since the one-vs-rest-strategy [11]
requires one model for each rule, a ruleset with r rules would
result in r LR models. In addition to the training cost, each
input effectively forces inferences over all r models. Second,
since LR commonly targets linearly separable datasets, it is
inadequate to model the space of matching inputs for rules
of complicated regex conditions. §5 compares LR with DL-
based solutions.

3 Learned Rule Ranker

Recent advances from deep learning communities have driven
the availability of off-the-shelf DL models such as the popular

1042 2019 USENIX Annual Technical Conference USENIX Association

fully connected Deep Neural Networks (DNN) and Recur-
rent Neural Networks (RNN). DL models have the following
advantages in the context of realizing learned rankers for mod-
ern systems. First, DL models can model complex non-linear
datasets (e.g., rules with complicated conditions in our case).
Second, DL models have hyper-parameters (e.g., number of
hidden layers and neurons) that can easily be tuned to op-
timize the trade off between model accuracy and inference
latency. Third, although DL models have been known to re-
quire a large amount of training data, rule-matching system
inputs can be randomly generated and cheaply labeled.

Deploying DL models for learned rule ranker involves the
following considerations and customizations.

Model selection. Given that inputs are strings, we consider
the use of both DNN models (for their simplicity) and RNN
models (for their ability to handle an arbitrary length of texts).
As §5 shows, DNN typically has a lower inference latency,
and RNN typically has a higher accuracy in prioritizing the
matching rule among the top-N candidates. However, we ar-
gue that model selection goes beyond simply selecting the
most accurate model configuration. Being a system building
block, the learned ranker design must consider how the infer-
ence accuracy and costs would impact the end-to-end system
performance. We illustrate this consideration with Figure 1 –
if the regex matching engine is fast, having a relatively inac-
curate rule ranker might be a reasonable design, especially if
the overhead of checking one unnecessary rule is lower than
the inference overhead of more accurate rankers. At the same
time, a relatively inaccurate rule ranker might hurt the overall
system performance, especially if the reduction in the amount
of unnecessary rule checking does not adequately compensate
the inference overhead.

Model inputs and outputs. The input layer of a neural net-
work takes in a vector of real numbers. Since inputs in our
case are a string of characters, they go through the process of
word embedding to convert individual characters into 8-bit
numbers in ASCII encoding. Furthermore, we note that DNN
needs to take the entire input string at once, which forces the
DNN input layer size to be at least as large as the input string.
While the maximum input string length needs to be decided
beforehand, system operators usually have statistics on the
typical system workload. If an input string is shorter than
the maximum length, we pad "0" at the end of the vectorized
input. On the other hand, since RNN can take the input string
in chunks, it can handle inputs of arbitrary length.

The output layer has a set of neurons where each neuron
corresponds to a particular rule. Each neuron outputs a num-
ber between 0 and 1 representing the classification probability.
We use these outputs to rank rules.

Input Generator. In addition to real-world traces of rule-
matching system inputs, ranker training can happen with artifi-
cially generated matching/unmatching inputs. One advantage

that the input generator offers is the large quantity of training
data necessary for training DL models. To generate training
inputs for a rule, our input generator runs Xeger [21] and
Exrex [22], which are popular Python libraries for generating
random strings from a given regex. Then, we randomly repeat-
edly choose S random characters from each of these gener-
ated inputs, and replace them with random characters. These
mutated strings are then classified as either the matching
and unmatching, by running the regex matching engine. The
value of S is a crucial parameter – a larger S produces a nearly
random unmatching string, and a smaller S changes only a
few characters to simulate "near-miss" cases in the real world.

Training. With training inputs collected in the real world or
generated by the input generator, we follow the popular train-
ing method of backward propagation with gradient descent.
Since training data are labeled, the training is effectively a
supervised learning. We use batch training, and each batch
contains one input for each rule and one unmatching input.
In addition, we train the DL model with 1,000 epochs, we
use ReLu as the activation function at hidden layers and we
use softmax at the output layer for outputting classification
probabilities.

4 Implementation

We implement our learned ranker in Python 3.6 and Tensor-
Flow 1.10.0. Our current implementation consists of ∼1,400
lines of Python code. In order to optimize the performance
of TensorFlow on a CPU, we recompile the library with SSE
4.2, AVX and FMA instructions. We also enable just-in-time
compilation for TensorFlow graphs.

To expose the target rule-matching system for the purpose
of labelling inputs, we write a client stub. The client stub
receives input strings from our input generator, and calls the
target system’s API. The communication between the input
generator and the client stub happens over HTTP with mes-
sages in the JSON format.

5 Evaluation

Our major results include – (1) a learned rule ranker can
reduce the average number of per-input regex matching invo-
cations by as much as 98.54%, with a top-5 ranking accuracy
of at least 96.16%. (2) Factoring in the rule ranker inference
overhead, the learning-augmented design reduces the rule
matching latency by as much as 78.81%. (3) We demonstrate
that the ranking model design should consider a global opti-
mization strategy, as having the most accurate model does not
necessarily benefit the end-to-end system performance.

USENIX Association 2019 USENIX Annual Technical Conference 1043

5.1 Methodology

Rulesets. While a learned rule ranker is not limited to security-
related scenarios, two popular rulesets that are publicly avail-
able are ModSecurity CRS v3.0 [2] and Snort v3.0 [6]. The
former is a web application firewall module, and the latter
is a network-based intrusion detection system. We are inter-
ested in rules with complicated regular expressions with meta-
characters, rather than simple string matching – our RSCRS
ruleset consists of 69 regex rules ranging from 20 to 3447 char-
acters, and RSSnort ruleset consists of 196 regex rules ranging
from 21 to 243 characters. We note that rules can have match-
ing criteria on multiple input fields, e.g., ARGS, ARGS_NAMES,
REQUEST_COOKIES, and REQUEST_COOKIES_NAMES in CRS,
and HTTP_header, HTTP_uri, and HTTP_method in Snort.

Workload datasets. Our experiments are based on following
rule-matching system workloads: (1) the public ECML data
set, WLECML [1], and (2) artificial data sets generated from the
CRS and Snort rulesets, WLCRS and WLSnort. The former is
primarily used as testing dataset. The latter can drive training
and testing, by separately generating multiple sets of inputs.

For the artificial data sets, an input generator (c.f. §3) out-
puts random matching and unmatching strings, with respect
to the given regex pattern. Unmatching strings allow us to test
rules that require only some of the specified fields to match.
The tool can generate a balanced workload to simulate the
worst case where all rules are likely to be hit.

Testbed environment. We run popular rule-matching engines
including PCRE [3], PCRE-JIT [4], and RE2 [5]. PCRE is
the most widely used open-source regex matching engine,
and the JIT optimization minimizes unnecessary parsing of
the internal bytecode representation, especially the matching
engine can contain many unused code branches from if and
switch statements. RE2 is a fast and thread-friendly regex
matching engine. We use Python and carry out experiments
on a Ubuntu-based Azure VM with access to 8 cores of Intel
Xeon E5-2673 running at 2.4 GHz and 3 GB of RAM.

5.2 Rule Ranking Accuracy

The primary goal of the learned rule ranker is to minimize
unnecessary regex rule matching, and the system performance
gain depends on its effectiveness in correctly prioritizing the
matching rule as a top candidate. We quantify the effective-
ness by the top-N accuracy, or the probability that the rule
ranker successfully prioritizes the matching rule to be one
of the first N rules to check. This subsection evaluates the
different factors of the top-N accuracy.

Impacts of model selection. One factor that can impact the
rule ranker’s top-N accuracy is the learning model, and we
empirically evaluate rule rankers implemented by DNN mod-
els (with two hidden layers of 128, 256, and 512 neurons),

Model Top-1 Top-3 Top-5 Latency (µs)
DNN(128) 81.85% 94.39% 97.05% 11.65
DNN(256) 83.37% 95.18% 97.45% 14.68
DNN(512) 83.72% 95.61% 97.52% 21.44
RNN(128) 89.44% 97.51% 98.82% 33.43
RNN(64) 92.98% 98.55% 99.30% 39.88
RNN(32) 95.02% 99.23% 99.71% 48.02
LR 67.69% 82.89% 88.18% 48.25

(a) RSCRS
Model Top-1 Top-3 Top-5 Latency (µs)
DNN(128) 80.08% 93.34% 96.16% 11.75
DNN(256) 83.14% 94.69% 97.27% 15.42
DNN(512) 84.45% 95.34% 97.41% 22.44
RNN(128) 85.59% 96.88% 98.26% 41.62
RNN(64) 91.33% 98.19% 99.18% 46.21
RNN(32) 94.45% 99.22% 99.63% 56.21
LR 83.83% 93.29% 95.65% 93.19

(b) RSSnort

Table 1: One factor that impacts rule ranking accuracy is the
learning model selection: DNN (with two hidden layers of
128, 256, and 512 neurons), RNN (with input chunk size of 32,
64, and 128 characters), and logistic regression (LR). Results
illustrate the trade off between top-N accuracies and ranking
latency.

Predicted Ranking for the Matching Rule

N
um

 In
pu

ts
 (%

)

0 5 10 15 20 25

0
20

40
60

80
10

0

83
.37

9.6
2

2.1
7

1.5 0.7
5

0.6
4

0.5
6

0.3
1

0.2
7

0.1
5

0.0
3

0.0
2

0.0
2

0.0
2

Figure 2: Distribution of the predicted ranking for matching
rules. For 83.37% of inputs, the rule ranker is able to prioritize
the matching rule as the first candidate.

RNN models (with input chunk size of 32, 64, and 128 char-
acters), and logistic regression (LR). We train each model
with 100,000 inputs from WLCRS and WLSnort. Table 1a and
1b show empirical measurements for WLCRS and WLSnort,
respectively. We make the following observations. RNN and
LR have the highest and lowest top-N accuracies, respectively.
While DNN (512) exhibits a 2.19% lower top-5 accuracy than
RNN (32), it is ∼ 2.24× faster. This trade-off suggests that
simply using top-N accuracies as the selection metric might
not benefit the entire system, and we further discuss how
the trade-off between top-N accuracies and inference costs
impacts the end-to-end rule matching throughput in §5.3.

Next, we look at inputs where the rule ranker fails to prop-
erly prioritize rules. Since these inputs require the regex
matching engine to process more rules, they have a higher
rule matching latency. Figure 2 illustrates the distribution
of the predicted ranking for matching rules in the case of

1044 2019 USENIX Annual Technical Conference USENIX Association

Num Training Data (K)

Ra
nk

in
g

Ac
cu

ra
cy

 (%
)

0 10 20 30 40 50 60 70 80 90 100

20
40

60
80

10
0

DNN
RNN

LR

(a) Top-1 accuracy

Num Training Data (K)

Ra
nk

in
g

Ac
cu

ra
cy

 (%
)

0 10 20 30 40 50 60 70 80 90 100

20
40

60
80

10
0

DNN
RNN

LR

(b) Top-5 accuracy

Figure 3: Increase in ranking accuracy in terms of training
data size, in the case of RSCRS.

DNN(256). For 83.37% of inputs, the rule ranker is able to
prioritize the matching rule as the first candidate. For 2.55%
of inputs, it fails to prioritize the matching rule as a top-5
candidate. Interestingly, most of these inputs are relatively
short, and the excessive padding might cause the ranker to
infer those inputs incorrectly.

Impacts of training dataset size. Another factor that can im-
pact the rule ranker’s top-N accuracy is the amount of training
data. Figure 3 shows how the accuracy increases for different
DL/ML models in the case of RSCRS, and we evaluate the
accuracy by testing 1,000 randomly generated inputs (after
each training iteration with 2,000 generated inputs). We note
that our models generally start to converge after being trained
with ∼90,000 inputs.

Impacts from imbalanced workload distributions. We ac-
knowledge that, if the system operator has a complete prior
knowledge of the workload distributions, it is possible to hard-
code a static rule checking order. One case where this is par-
ticularly useful is the long-tailed rule hit distribution. In other
words, the workload is imbalanced such that a majority of in-
puts match only a subset of the ruleset. Compared to WLCRS
and WLSnort, the ECML dataset is relatively imbalanced. And,
empirical results show that static order can significantly re-
duce the number of rules that the regex matching engine needs
to process for WLECML.

However, given that the learned rule ranker is able to prior-
itize rules with each input’s features, it can actually achieve
a larger reduction – compared to static ordering, the DNN-
based rule ranker reduces by 88.70% and 56.04% for RSCRS
and RSSnort in the case of WLECML, respectively.

Regex engine Without rule ranker With rule ranker Reduction
PCRE 1878.79 µsec 404.36 µsec 78.47%
PCRE-JIT 773.82 µsec 185.65 µsec 78.81%
RE2 206.01 µsec 55.15 µsec 73.22%

Table 2: Latency for matching one input with DNN(256)-
based ranking model, on the RSCRS ruleset.

Ruleset No rule ranker Rule ranker Reduction
RSCRS 22.38 1.68 92.49%
RSSnort 91.56 1.34 98.54%

Table 3: Average number of regex rules that the regex match-
ing engine needs to process for each input.

5.3 Rule Matching Latency Reduction
We next evaluate the rule matching latency reduction from the
learned rule ranker, and we integrate the learned rule ranker
into the PCRE, PCRE-JIT, and RE2 engines.

Table 2 shows the latency reduction for processing one
input with different regex matching engines, on the RSCRS
ruleset. Each experiment runs 10,000 different inputs to avoid
measurement noise. By fixing the ranking model, we observe
that the reduction varies with different regex matching engines
– the reduction ranges from 73.22% to 78.47%. This reduction
in latency is correlated with the reduction in the number of
rules that a regex matching engine needs to process. Table 3
shows that, for RSCRS, the average number of regex matching
invocations is 1.68, which is a 92.49% reduction from 22.38.
The reduction in the case of RSSnort is 98.54%. We note that,
since both WLCRS and WLSnort are fairly balanced workloads
(i.e., the number of matching inputs for each rule is roughly
the same), per-input rule prioritization is key to reduction.
And, the learned ranker exhibits a higher gain in cases where
the overhead of processing an unnecessary rule is higher.

Finally, we highlight that the design of learning-augmented
systems should consider the trade off between the learning’s
interference costs and the system’s global performance gain.
Figure 4 illustrates results from a DNN-based ruler ranker.
Although having larger hidden layers improves DNN model
accuracy, it does not necessarily benefit the end-to-end match-
ing latency. This is due to the fact that, not only does an
accurate model reduce unnecessary rule checking, but it also
imposes higher inference costs to the end-to-end system per-
formance. Unfortunately, the optimal model configuration
depends on the execution environment and system configu-
rations – in our case, the selection of regex matching engine
and ruleset. For instance, Figure 4 shows that the optimal
DNN hidden layer size is ∼192 neurons for RE2 with RSCRS
ruleset, ∼128 neurons for RE2 with RSSnort ruleset, ∼256
neurons for PCRE-JIT with RSCRS ruleset, and ∼64 neurons
for PCRE with RSSnort ruleset.

Discussion. We note that certain ruleset characteristics are
also factors that potentially impact the overall rule matching

USENIX Association 2019 USENIX Annual Technical Conference 1045

DNN Hidden Layer Size (neurons)

La
te

nc
y

(µ
s)

0 100 200 300 400 500 600 700 800 900 1000

0
10

0
20

0
30

0

CRS ruleset Snort ruleset

(a) PCRE-JIT rule-matching engine

DNN Hidden Layer Size (neurons)

La
te

nc
y

(µ
s)

0 100 200 300 400 500 600 700 800 900 1000

0
10

0
20

0
30

0

CRS ruleset Snort ruleset

(b) RE2 rule-matching engine

Figure 4: This figure illustrates that, although having larger
hidden layers improves DNN model accuracy, it does not
necessarily benefit the end-to-end matching latency. The rea-
son behind this observation is the correlation between model
accuracy and inference costs.

performance. One prominent example is the number of rules
in the ruleset. Specifically, as the ruleset becomes larger, suc-
cessfully prioritizing the matching rule means more rules can
be skipped. On the other hand, a larger ruleset requires more
complicated ML/DL models, which can impose additional
overhead on the system performance. Given the lack of tools
to automatically generate rulesets of different characteristics,
our experiments in this section are based on two public rule-
sets, RSCRS and RSSnort. We leave the evaluation of ruleset
characteristics as future work.

6 Related Work

Accelerating rule matching. The realization of regular ex-
pression patterns as finite state automata was first proposed by
Kleene et al. [14] in the 1950s, and NFA and DFA have been
widely used to formalize the description of regex patterns.
Since most rule-based systems (such as traffic detection, data
retrieving, and even DNA sequence matching) rely on regular
expression patterns for condition matching, there have been
efforts in speeding up regex pattern matching.

Some efforts focus on software optimizations for finite
state automaton. PCRE-JIT [4] uses the just-in-time (JIT)
library to minimize unnecessary parsing of the internal byte-
code representation. Recently, Choi et al. proposed DFC [12],
a memory-efficient and cache-friendly data structure that min-
imizes CPU stalls to maximize instruction-level parallelism.

Kumar et al. [16] proposed a representation of regular ex-
pression patterns called Delayed Input DFA (D2FA), which
reduces the space requirement as compared to DFA. Further
efforts build upon D2FA [10, 18], and compress states and
transitions. Finally, some efforts leverage hardware capabil-
ities to speed up automaton – Mitra et al. [20] and Yuan et
al. [26] explored the use of FPGAs and GPUs, respectively.

Being a system building block, the learned rule ranker
should complement many existing optimizations.

Learning-augmented systems. Auto-tuning system param-
eters is a popular scenario for learning-augmented systems.
OtterTune [8] is a database optimization tool. It uses a combi-
nation of supervised and unsupervised machine learning meth-
ods to reduce the parameter dimension, characterize observed
workloads, and recommend configurations. CherryPick [9]
demonstrates the potential of using Bayesian optimization
and Gaussian process in predicting the best-performing cloud
configuration for a given machine learning computation work-
load. Metis [17] addresses challenges that systems introduce
to hinder the tuning robustness.

Furthermore, the networking community [24] has been
applying ML and DL techniques to traffic prediction, traffic
classification, resource management, network adaption, etc.
To improve the QoS metric of video streaming, Mao et al. [19]
used reinforcement learning in the rate adapting mechanism
to continuously and adaptively adjust the streaming bit rate.

Finally, Kraska et al. [15] proposed the learned index to
replace common indexes in databases. The learned index for-
mulates the problem of database indexes as a DL predictive
problem. It offers similar semantic guarantees, and a signifi-
cant improvement in speed and memory efficiency.

Building on the success of these efforts, we explore whether
the learned ranker can be a building block of learning-
augmented systems.

7 Conclusion

This paper explores the potential and feasibility of learned
ranker as a building block for learning-augmented systems.
Particularly, we use rule-matching systems as a concrete sce-
nario. To evaluate the benefits of the learned ranker, we have
integrated it into popular regex matching engines. As future
work, we plan to study challenges in training learned rankers,
and apply learned rankers to other system scenarios.

Acknowledgments

We thank anonymous reviewers and our shepherd, Dr. Julia
Lawall, for their constructive feedback and suggestions. This
work is partly supported by the Youth Innovation Promotion
Association of CAS and the National Natural Science Foun-
dation of China (No.61772485 and No.61432016).

1046 2019 USENIX Annual Technical Conference USENIX Association

References

[1] ECML/PKDD 2007 Discovery Challenge - An-
alyzing Web Traffic. http://www.lirmm.fr/
pkdd2007-challenge.

[2] ModSecurity - Open Source Web Application Firewall.
https://modsecurity.org.

[3] PCRE - Perl Compatible Regular Expressions. http:
//www.pcre.org.

[4] PCRE JIT. http://www.pcre.org/original/doc/
html/pcrejit.html.

[5] RE2. https://github.com/google/re2.

[6] Snort. https://www.snort.org.

[7] Hyperscan: Turbo Boosting Regular Expression Match-
ing for Network Security Applications. In NSDI (Oper-
ational Systems Track). USENIX, 2019.

[8] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon,
and Bohan Zhang. Automatic Database Management
System Tuning Through Large-scale Machine Learning.
In SIGMOD. ACM, 2017.

[9] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen,
Shivaram Venkataraman, Minlan Yu, and Ming Zhang.
CherryPick: Adaptively Unearthing the Best Cloud Con-
figurations for Big Data Analytics. In NSDI. USENIX,
2017.

[10] Michela Becchi and Patrick Crowley. An Improved
Algorithm to Accelerate Regular Expression Evaluation.
In ANCS. ACM, 2007.

[11] Christopher M Bishop. Pattern recognition and machine
learning. springer, 2006.

[12] Byungkwon Choi, Jongwook Chae, Muhammad
Jamshed, Kyoungsoo Park, and Dongsu Han. DFC:
Accelerating String Pattern Matching for Network
Applications. In NSDI, 2016.

[13] Russ Cox. Regular Expression Matching Can Be
Simple And Fast (But Is Slow in Java, Perl, PHP,
Python, Ruby, ...). http://swtch.com/~rsc/regexp/
regexp1.html, 2007.

[14] Stephen Cole Kleene. Representation of Events in Nerve
Nets and Finite Automata. Technical report, United
States Air Force, 1951.

[15] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and
Neoklis Polyzotis. The Case for Learned Index Struc-
tures. In SIGMOD. ACM, 2018.

[16] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick
Crowley, and Jonathan Turner. Algorithms to Acceler-
ate Multiple Regular Expressions Matching for Deep
Packet Inspection. In ACM SIGCOMM Computer Com-
munication Review. ACM, 2006.

[17] Zhao Lucis Li, Chieh-Jan Mike Liang, Wenjia He, Lian-
jie Zhu, Wenjun Dai, Jin Jiang, and Guangzhong Sun.
Metis: Robustly Optimizing Tail Latencies of Cloud
Systems. In ATC. USENIX, 2018.

[18] Alex X Liu and Eric Torng. An Overlay Automata Ap-
proach to Regular Expression Matching. In INFOCOM.
IEEE, 2014.

[19] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.
Neural Adaptive Video Streaming with Pensieve. In
SIGCOMM. ACM, 2017.

[20] Abhishek Mitra, Walid Najjar, and Laxmi Bhuyan. Com-
piling PCRE to FPGA for Accelerating Snort IDS. In
ANCS. ACM, 2007.

[21] Colm O’Connor. Xeger. https://pypi.org/
project/xeger/, 2018.

[22] Adam Tauber. Exrex. https://pypi.org/project/
exrex/, 2018.

[23] Shivaram Venkataraman, Zongheng Yang, Michael
Franklin, Benjamin Recht, and Ion Stoica. Ernest: Effi-
cient Performance Prediction for Large-Scale Advanced
Analytic. In NSDI. USENIX, 2016.

[24] Mowei Wang, Yong Cui, Xin Wang, Shihan Xiao, and
Junchen Jiang. Machine Learning for Networking:
Workflow, Advances and Opportunities. IEEE Network,
2018.

[25] Norio Yamagaki, Reetinder Sidhu, and Satoshi Kamiya.
High-speed Regular Expression Matching Engine Using
Multi-character NFA. In FPL. IEEE, 2008.

[26] Yuan Zu, Ming Yang, Zhonghu Xu, Lin Wang, Xin Tian,
Kunyang Peng, and Qunfeng Dong. GPU-based NFA
Implementation for Memory-efficient High-speed Regu-

lar Expression Matching. In PPoPP, 2012.

USENIX Association 2019 USENIX Annual Technical Conference 1047

http://www.lirmm.fr/pkdd2007-challenge
http://www.lirmm.fr/pkdd2007-challenge
https://modsecurity.org
http://www.pcre.org
http://www.pcre.org
http://www.pcre.org/original/doc/html/pcrejit.html
http://www.pcre.org/original/doc/html/pcrejit.html
https://github.com/google/re2
https://www.snort.org
http://swtch.com/~rsc/regexp/regexp1.html
http://swtch.com/~rsc/regexp/regexp1.html
https://pypi.org/project/xeger/
https://pypi.org/project/xeger/
https://pypi.org/project/exrex/
https://pypi.org/project/exrex/

	Introduction
	System Overview
	Strawman Solutions for Rule Ranker

	Learned Rule Ranker
	Implementation
	Evaluation
	Methodology
	Rule Ranking Accuracy
	Rule Matching Latency Reduction

	Related Work
	Conclusion

