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ABSTRACT
The link speed in datacenters is growing fast, from 1Gbp-
s to 100Gbps. However, the buffer size of commodity
switches increases slowly, thus significantly outpaced by
the link speed. In such extremely shallow-buffered data-
center networks, prior TCP/ECN solutions suffer from
either excessive packet losses or significant throughput
degradation. Motivated by this, we introduce BCC, a
simple yet effective solution with only one more configu-
ration (shared buffer ECN/RED) at commodity switches.
BCC operates based on real-time shared buffer utiliza-
tion. When the buffer is abundant, BCC delivers both
high throughput and low packet loss rate. When it be-
comes scarce, BCC triggers shared buffer ECN/RED to
prevent packet losses at the cost of sacrificing a small
amount of throughput. Our preliminary results show
that BCC maintains low packet loss rate persistently
while only slightly degrading throughput when the buffer
becomes insufficient. Compared to current practice, BC-
C achieves up to 94.4% lower 99th percentile completion
time for small flows while only degrading large flows by
up to 2.8%.
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1 INTRODUCTION
Datacenter applications generate a mix of workloads with
both latency-sensitive small messages and throughput-
sensitive bulk transfers. Hence, datacenter network (D-
CN) transport should provide low latency and high
throughput simultaneously to meet the requirements
of applications.

It is a challenge to achieve both goals that are essential-
ly at odds, especially under the shared shallow-buffered
commodity switches in production DCNs. This challenge
has been identified 7 years ago by Microsoft researchers
in their production DCNs. To address it, they leveraged
ECN [19] to strike the tradeoff between high throughput
and low latency, and showed that a properly configured
per-port ECN/RED marking scheme could well utilize
the shallow buffer to achieve both high throughput and
low latency, while still reserving certain headroom to
absorb micro-bursts [5]. Since then, ECN-based trans-
ports become flourishing [5, 16, 20, 21] and are widely
adopted in industry.
However, in this paper, we show that this seemingly

solved problem resurges and the solution is now being
re-challenged, due to the recent industrial trend. The
link speed of production DCNs is growing fast from
1Gbps to 100Gbps, whereas the buffer size of commodity
switches increases slowly (e.g., from 4MB at 1Gbps to
16MB at 100Gbps), significantly outpaced by the link
speed. Consequently, the buffer size per port per Gbps
drops from 85KB to 5.12KB , leading to an extremely
shallow-buffered DCN environment (S2.3).
We show that it is hard for prior TCP/ECN solu-

tions to remain effective with extremely shallow buffers
(S3). On the one hand, if we configure the ECN marking
threshold as originally proposed [5, 21], it causes exces-
sive packet losses even before ECN reacts when many
ports are active simultaneously. On the other hand, if we
configure a relatively lower ECN threshold than original
one, it degrades throughput unnecessarily when fewer
ports are busy because ECN over-reacts.

https://doi.org/10.1145/3106989.3107003
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This problem is severe, but receives little attention so
far, and there is no readily deployable solution either.
Thus, the key contribution of this paper is to expose
this problem and its consequences experimentally, and
introduce an extremely simple, yet effective and readily
deployable solution, named BCC (Buffer-aware Conges-
tion Control), to it.

Our design of BCC is inspired by the understanding of
modern switching chip functionalities. We are surprised
to find that to solve our problem, one more ECN configu-
ration is enough! At its core, BCC inherits the success of
per-port ECN/RED by DCTCP [5], and further enables
shared buffer ECN/RED to cope with the extremely
shallow buffer problem. Shared buffer ECN/RED tracks
the occupancy of the shared buffer pool to mark packets.
While this function is there [4, 8], it was less understood
and seldom used previously in literature. BCC perhaps
exploits it for the first time.
In BCC, shared buffer ECN/RED and per-port EC-

N/RED work complementarily to each other. When fewer
ports are active, the shared buffer is abundant. Hence,
per-port ECN/RED will take effect first and strike the
balance of high throughput and low latency as before [5].
When more and more ports become active, the shared
buffer turns scarcer. Thus, shared buffer ECN/RED will
automatically be triggered first to prevent packet losses—
BCC trades throughput for latency when achieving both
becomes impossible.

We evaluate the performance of BCC using ns-2 sim-
ulations (S5). At low loads, BCC fully utilizes the link
capacity. It achieves up to 13.5% lower average comple-
tion time for large flows, compared to a conservative ECN
configuration. At high loads, BCC keeps low packet loss
rate while only sacrificing a small amount of throughput.
It achieves up to 94.4% lower 99th percentile completion
time for small flows while only degrading large flows by
up to 2.8%, compared to a standard ECN configuration.
The rest of the paper is organized as follows. We

introduce extremely shallow switch buffer and its impacts
in S2 and S3, respectively. We present the design of BCC
in S4. S5 presents evaluation results. We discuss related
work in S6 and conclude the paper in S7.

2 EXTREMELY SHALLOW BUFFER
In this section, we first understand the buffering logic of
commodity switching chips. Then, we quantify the buffer
requirements of TCP1 at high-speed. Finally, we show
that the buffer space becomes increasingly insufficient
as the link speed increases.

1In this paper, by TCP we refer to various TCP-variants, such as
DCTCP [5] and ECN* [21], etc., that are designed for datacenters.

2.1 Understanding the switch buffering
On the switching chip, the Memory Memory Manage-
ment Unit (MMU) allocates the on chip buffer memory
to incoming packets. The buffer memory is divided into
several pools, typically many per egress queue private
pools and a shared pool.

When a packet arrives, the MMU first tries to enqueue
it into the private pool of the destination egress queue.
If there is no enough buffer space, the MMU tries to
enqueue it into the shared pool. The packet only gets
dropped by MMU if neither the private pool nor the
shared pool has enough space. Moreover, the MMU only
drops new arriving packets. Packets in the pool cannot
be pushed out and dropped.

2.2 Buffer requirement of TCP at
high-speed

TCP is the dominant transport protocol in DCNs [5]. The
switch buffer is crucial for TCP’s performance. Moderate
buffer occupancies are necessary for high throughput [7].
Futhermore, we also need some buffer headroom to ab-
sorb transient busrts [5]. Therefore, insufficient switch
buffers cause (1) low throughput, thus slowing bulk
transfers and (2) excessive packet losses, thus degrad-
ing tail completion times for small messages.

There is typically a small number of concurrent large
flows in production DCNs [5]. In such scenarios, to
achieve the desired performance, TCP requires at least
𝐶 × 𝑅𝑇𝑇 × 𝜆 buffer space per port, where 𝐶 is the
link capacity, 𝑅𝑇𝑇 is the average round-trip time and
𝜆 is a characteristic constant of the congestion control
algorithm. In recent years, the link speed in DCNs has
increased greatly, from 1Gbps to 40Gbps and now to
100Gbps. However, the base latency does not change
much as it is mainly determined by processing overhead
from various sources (e.g., kernel network stack, driver,
NIC and middlebox). Hence, the buffer demand of TCP
almost increases in proportion to the link speed in DCNs.

Testbed measurement: In out testbed, three server-
s (Mellanox ConnectX-4 100Gbps NIC, Linux kernel
3.10.0) are connected to a Arista 7060CX-32S-F switch.
The base latency in is ∼30𝜇s. We consider two TCP vari-
ants: DCTCP [5] and ECN* [21] (regular ECN-enabled
TCP which cuts the window by half in the presence of
a ECN mark). We generate 16 long-lived flows using
iperf from two senders to a receiver. We vary the RED
marking threshold2 and measure the aggregate through-
put at the receiver side. For a TCP variant, its basic

2We set the maximum and minimum queue length thresholds of

RED [10] to the same value as previous work [5, 21] suggests.
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Figure 1: [Testbed] Aggregate TCP throughput
with different ECN/RED marking thresholds

buffer requirement approximately equals to the minimum
marking threshold delivering 100% link utilization.

Figure 1 shows aggregate throughput results with dif-
ferent thresholds. As expected, ECN* starts to achieve
100% throughput on 325KB which is close to the bandwidth-
delay product (BDP) in our testbed. Our measurement
also shows that DCTCP performs similar as ECN* in
practice. The minimum threshold that DCTCP requires
for 100% throughput is 250KB. The reader may be cu-
rious that why our experiment observation of DCTCP
seems inconsistent with theory results in [6] (0.17BDP
buffering delivers 100% throughput). We think this is
mainly due to packet bursts that are caused by various
interactions between the OS and the NIC (e.g., TSO,
GRO and interrupt moderation). Hence, a much larger
threshold is required to absorb bursts. Such complex
burst behaviors are difficult to capture by ideal fluid
model in [6], thus resulting in the theory-practice gap3.
We also conduct the above experiment using Windows
Server 2012 R2 and observe that DCTCP requires ∼60-
70% BDP buffering for 100% throughput.

Production Datacenters: Compared to our simple
small-scale testbed, production datacenters are more
challenging and have larger base latency. At the end
host, packets may experience high processing delay due
to kernel scheduling. In the network, packets experi-
ence innegligible processing delay when going through
various middleboxes (e.g., firewall, IPSec gateway and
load balancer). Long-distance cables and multiple switch
hops also bring several-microsecond delay. Above fac-
tors greatly increase the actual latency in production
environments. In [12], the authors show that even the
50th percentile inter-pod latency can exceed 200𝜇s. Such
latency eventually transfers to a large buffer demand.
The per-port buffer requirement of ECN* reaches 1MB
in a 100Gbps network with 80𝜇s base RTT.

3Such performance-theory gap has also been identified by previous
work [21] and even DCTCP paper itself [5].

2.3 Buffer becomes increasingly
insufficient

However, the buffer size of commodity switching chips
does not increase as expected. We list buffer and capacity
information of some commodity chips in Table 1. The
capacity significantly outpaces the buffer size, resulting
in decreasing buffer per port per Gbps (from 85KB to
5.12KB). The reasons of shallow switch buffers are at
least two-fold.

∙ The memory used in switch buffers is high-speed S-
RAM. Compared to DRAM, SRAM is more expensive
as it requires more transistors.

∙ The area increases with the memory size. When the
area becomes large, the read/write latency will in-
crease, making the memory access speed hard to match
the link speed.

Therefore, most commodity switches in DCNs are shallow
buffered. We envision that such trend will hold for future
200/400Gbps switching chips.

3 PROBLEMS CAUSED BY
EXTREMELY SHALLOW BUFFER

In this section, we show that, in extremely shallow-
buffered high-speed DCNs, existing TCP/ECN solutions
use switch buffers either (1) too aggressively, thus caus-
ing excessive packet losses at high loads (S3.1) or (2) too
conservatively, thus seriously degrading throughput at
low loads (S3.2).

3.1 Standard ECN configuration causes
excessive packet losses

To achieve 100% throughput, operators need to configure
a moderate marking threshold (e.g., 𝐶 ×𝑅𝑇𝑇 × 𝜆). To
the best of our knowledge, this is current operation prac-
tice in many production DCNs. However, the standard
ECN configuration is likely to overfill extremely shallow
buffers when many ports are congested simultaneously.
Therefore, it may cause excessive packet losses and poor
performance for small flows.

We take Broadcom Tomahawk with 16MB buffer and
32 100Gbps ports as an example. If TCP desires 1MB
(100𝐺𝑏𝑝𝑠× 80𝜇𝑠) marking threshold per port, the buffer
will be overfilled when more than half of the total ports
are congested. What is worse, Tomahawk has 4 switch
cores to achieve desired performance at the high-speed.
Each core has its own MMU and 4MB buffer [1, 2] and
dynamic buffer sharing only happens within the single
core. Therefore, the buffer of a Broadcom Tomahawk
chip will be overfilled when more than 4 ports attached
to a single core are congested simultaneously.
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ASIC Broadcom 56538 Broadcom Trident+ Broadcom Trident II Broadcom Tomahawk

Capacity (ports × BW) 48 p × 1 Gbps 48 p × 10 Gbps 32 p × 40 Gbps 32 p × 100 Gbps

Total buffer 4MB 9MB 12MB 16MB (4 MMUs)

Buffer per port 85KB 192KB 384KB 512KB

Buffer per port per Gbps 85KB 19.2KB 9.6KB 5.12KB

Table 1: Information of some commodity datacenter switching chips.

3.2 Conservative ECN configuration
degrades throughput

Realizing the above limitation, a straight forward so-
lution is to configure a lower marking threshold (e.g.,
≤ average per-port buffer), thus leaving headroom to
reduce packet losses. However, this conservative EC-
N configuration causes much unnecessary bandwidth
wastage when few ports are congested simultaneously.
For example, when only a single switch port is congested,
this method still throttles TCP throughput despite the
sufficient switch buffer resource.

4 SOLUTION

4.1 Design Goals
We seek to achieve both high throughput and low packet
loss rate simultaneously. However, as shown in S3, it is
difficult to achieve both metrics when many ports are
active simultaneously. When a conflict arises between
the two metrics, we prefer to keep low packet loss rate
at the cost of sacrificing a small amount of throughput.
This is because the bandwidth is generally plentiful in
datacenters, while a small increase in packet loss rate
(e.g., ≥ 0.1%) can seriously degrade the application
performance and in turn, operator revenue [15]. Further-
more, our solution should work with existing commodity
switches and legacy network stacks.

4.2 BCC Mechanism
We model the switch as a shared-buffer output-queued
switch. Variables and parameters used in the model are
listed in Table 2 and 3. We start from the simplest as-
sumption that each switch port only contains a single
egress queue4 and no buffer is reserved for each queue.
Hence, all buffers are dynamically allocated from a s-
ingle shared buffer pool. The switch has 𝐵 (shared)
buffer space and 𝑁 egress queues in total. An ECN-
based transport [5, 16, 20, 21] is enabled at the end host.
The standard ECN setting has been configured on each
port/queue to achieve 100% throughput.
Today’s commodity switching chip typically use Dy-

namic Threshold (DT) algorithm [9] for dynamic buffer
allocation. The shared buffer allocated to a queue is

4In S4.2 and S4.3, we use queue and port interchangeably.

Parameter Description

𝐵 Switch shared buffer size

𝑁 Total number of switch egress queues

𝐶 Capacity of the switch queue

𝑅𝑇𝑇 Base round-trip time

𝛼 Parameter for shared buffer allocation

𝐵𝑅
Minimum per-queue required buffer for
high throughput and low packet loss rate

𝐾𝑚𝑖𝑛
Minimum marking threshold for shared

buffer ECN/RED

𝐾𝑚𝑎𝑥
Maximum marking threshold for shared

buffer ECN/RED

𝑃𝑚𝑎𝑥
Maximum marking probability for shared

buffer ECN/RED

ℎ See Equation 3

Table 2: Shared buffer model parameters

Variable Description

𝑡 Time

𝑄𝑖(𝑡) Length of switch queue 𝑖 at time 𝑡

𝑇 (𝑡) Queue length control threshold at time 𝑡

Table 3: Shared buffer model variables

controlled by a parameter 𝛼. At time 𝑡, the MMU will
compute a threshold 𝑇 (𝑡) to limit the queue length. 𝑇 (𝑡)
is actually a function of the unused shared buffer size
and 𝛼 as follows:

𝑇 (𝑡) = 𝛼× (𝐵 −
𝑁∑︁
𝑖=1

𝑄𝑖(𝑡)) (1)

A packet arriving in queue 𝑖 at time 𝑡 will get dropped
if 𝑄𝑖(𝑡) ≥ 𝑇 (𝑡). As analyzed in [9], if there are 𝑀 active
queues, each queue can eventually get 𝛼×𝐵/(1 +𝑀 ×
𝛼) buffer space. The more active queues we have, the
smaller buffer space each queue can get from the shared
pool. 𝛼 values are typically powers of two for hardware
implementation simplicity (e.g., 1/128 to 8 in Tomhawk).
We assume that our ECN-based transport protocol

requires at least 𝐵𝑅 buffer space per queue to achieve
both high throughput and low packet loss rate. We simply
treat 𝐵𝑅 as a known constant here and show how to
determine 𝐵𝑅 later in S4.3. When 𝑇 (𝑡) > 𝐵𝑅, it means
that the switch has sufficient buffer space to achieve both
goals simultaneously. Hence, BCC just marks packets
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like the standard ECN configuration without degrading
throughput.
When 𝑇 (𝑡) ≤ 𝐵𝑅, it indicates that the shared buffer

pool is highly utilized by many concurrently active ports.
In such scenarios, only relying on standard ECN config-
uration may cause excessive packet losses as analyzed in
S3.1. Hence, BCC throttles the shared buffer occupan-
cy to avoid excessive packet losses. By Equation 1 and
𝑇 (𝑡) ≤ 𝐵𝑅, we derive that

𝑁∑︁
𝑖=1

𝑄𝑖(𝑡) ≥ 𝐵 −𝐵𝑅/𝛼 (2)

Here

𝑁∑︁
𝑖=1

𝑄𝑖(𝑡) is the occupancy of the shared buffer pool

at time 𝑡, and 𝐵, 𝐵𝑅 and 𝛼 are all known parameters.
This implies that, to prevent excessive packet losses,
BCC should throttle the shared buffer occupancy from
exceeding a static threshold 𝐵 −𝐵𝑅/𝛼.
To realize this, we leverage the shared buffer EC-

N/RED functionality which has been widely supported
in commodity switching chips [4, 8]. Shared buffer EC-
N/RED follows the original RED algorithm [10] but
tracks the occupancy of a shared buffer pool to mark
packets. It can effectively control shared buffer occupan-
cies. Moreover, shared buffer ECN/RED can be used
in combination with other switch ECN configurations.
When several ECN configurations coexist, a packet gets
marked if anyone decides to mark it first.

Summary: BCC is built on top of existing ECN-based
transports and per-port standard ECN configuration. It
further enables shared buffer ECN/RED at the switch
to achieve buffer-aware congestion control.

∙ When few ports are active, the shared buffer resource
is abundant and per-port standard ECN configura-
tion will take effect first to strike the balance of high
throughput and low latency as before [5]. Both high
throughput and low packet loss rate can be achieved.

∙ When more and more ports become congested, the
shared buffer resource turns scarcer. Shared buffer
ECN/RED will be automatically triggered first to
prevent packet losses at the cost of sacrificing a small
amount of bandwidth.

4.3 Parameter Selection
We now derive several parameters for BCC. First, we
determine 𝐵𝑅, the minimum per-queue (port) buffer size
for both high throughput and low packet loss rate. With
𝐵𝑅 fixed, we then decide marking thresholds and prob-
ability of shared ECN/RED. Note that in this section
we give several useful rules-of-thumb to set parameters
while leaving optimal parameter settings for future work.

Determine 𝐵𝑅: Statistics has shown that there is typ-
ically a small number of concurrent large flows to the
same receiver in DCNs [5]. Hence, we consider a sim-
ple scenario where several synchronized long-lived flows
share a bottleneck link. 𝐶 ×𝑅𝑇𝑇 × 𝜆 per port buffering
is required for 100% throughput. Furthermore, the lag
in ECN control loop imposes extra buffer requirement to
avoid packet losses. When a packet gets ECN marked at
switch egress5, the sender will reduce its window after
one 𝑅𝑇𝑇 . During this 𝑅𝑇𝑇 interval, extra buffer space
is required to absorb the queue increase. We consider the
most challenging slow start phase. As an ACK packet
can trigger two MTU-sized data packets, the aggregate
sending rate reaches 2𝐶 and the switch queue gradient
is 𝐶. Therefore we need 𝐶 ×𝑅𝑇𝑇 extra buffer space to
avoid packet losses and 𝐶 ×𝑅𝑇𝑇 × (1 + 𝜆) buffer space
in total to achieve both goals. Through ns-2 simulations,
we confirm that 𝐶 ×𝑅𝑇𝑇 × (1 + 𝜆) also works well for
a mix of small and large flows. As 𝐶 and 𝜆 are both
known and 𝑅𝑇𝑇 can be measured [12, 21] in production
DCNs, operators can easily compute the value of 𝐵𝑅.

Determine parameters for shared buffer ECN/RED:
We leverage shared buffer ECN/RED to prevent the
shared buffer occupancy from exceeding 𝐵 −𝐵𝑅/𝛼. To
achieve fast reaction to bursty traffic, we mark packets
based on the instantaneous buffer occupancy. Shared
buffer ECN/RED has 3 parameters to configure: min-
imum threshold 𝐾𝑚𝑖𝑛, maximum threshold 𝐾𝑚𝑎𝑥 and
maximum probability 𝑃𝑚𝑎𝑥. When the buffer occupan-
cy is: 1) below 𝐾𝑚𝑖𝑛, no packet is marked; 2) between
𝐾𝑚𝑖𝑛 and 𝐾𝑚𝑎𝑥, packets are marked according to a
probability; 3) exceeds 𝐾𝑚𝑎𝑥, all packets get marked.
Inspired by DCTCP [5], our first choice is to set

𝐾𝑚𝑖𝑛 = 𝐾𝑚𝑎𝑥 ≤ 𝐵 − 𝐵𝑅/𝛼, in which only a single
threshold is required. However, with such cut-off setting,
all flows sharing a buffer pool are likely to reduce their
window at the same time, resulting in global synchro-
nization problem and a further loss of throughput [10].

Therefore, we decided to perform a probabilistic mark-
ing by setting 𝐾𝑚𝑖𝑛 < 𝐾𝑚𝑎𝑥 = 𝐵−𝐵𝑅/𝛼. The key here
is to control the range between 𝐾𝑚𝑖𝑛 and 𝐾𝑚𝑎𝑥. A too
small 𝐾𝑚𝑎𝑥−𝐾𝑚𝑖𝑛 will make buffer occupancy regularly
ramp up beyond 𝐾𝑚𝑎𝑥, still causing global synchroniza-
tion and even packet losses. As original RED work [10]
suggests, 𝐾𝑚𝑎𝑥−𝐾𝑚𝑖𝑛 should be made sufficiently large
(e.g., larger than typical increase in the shared buffer oc-
cupancy during a RTT) to avoid global synchronization.
Hence, the choice of 𝐾𝑚𝑎𝑥 −𝐾𝑚𝑖𝑛 depends on both the
number of ports 𝑁 and link capacity 𝐶. In BCC, we set
𝐾𝑚𝑖𝑛 as follows:

5Modern shared buffer switches mark packets at egress side [22].
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𝐾𝑚𝑖𝑛 = 𝐵 −𝐵𝑅/𝛼− 𝐶 ×𝑁 × ℎ (3)

where ℎ is a parameter to control 𝐾𝑚𝑎𝑥 −𝐾𝑚𝑖𝑛. In our
evaluation, we set ℎ to 8𝜇s. For the maximum marking
probability 𝑃𝑚𝑎𝑥, we set it to 10% according to [10].

4.4 Discussion

Impact of multiple MMUs: Each MMU has its own
shared buffer ECN/RED without interfering with each
other. Hence, BCC supports multi-MMU chips.

Impact of different 𝛼 values: Operators may con-
figure different 𝛼 values for different queues for differ-
entiated network services. In such scenarios, we can
choose the minimum value 𝛼𝑚𝑖𝑛 among them and update
shared buffer ECN/RED parameters as follows: 𝐾𝑚𝑎𝑥 =
𝐵 −𝐵𝑅/𝛼𝑚𝑖𝑛, 𝐾𝑚𝑖𝑛 = 𝐵 −𝐵𝑅/𝛼𝑚𝑖𝑛 − 𝐶 ×𝑁 × ℎ.

Impact of static reserved buffers: When both static
reserved buffers and dynamic shared buffers exist, the
MMU first tries to use static reserved buffers. Therefore,
we should reduce 𝐵𝑅 to incorporate the static reserved
buffer into BCC. Let 𝑆𝑚𝑖𝑛 denote the minimum static
buffer size reserved for a single queue. Our recommended
value for 𝐵𝑅 should become 𝐶 ×𝑅𝑇𝑇 × (1 + 𝜆)− 𝑆𝑚𝑖𝑛

5 EVALUATION
In this section, we present ns-2 simulations results.

Topology: We simulate a 128-host 100Gbps leaf-spine
topology with 8 leaf switches and 8 spine switches. We
use ECMP for load balancing. The base fabric RTT is
∼80𝜇s. The BDP is 1MB. The jumbo frame is enabled.

Workload: We generate traffic according to the web
search workload (see [5] for more details about the distri-
bution). We adjust the flow arrival intervals to achieve
the desired load in the network core.

Buffer: To emulate Tomahawk chip, we attach every 8
switch ports to a 3MB shared buffer pool. We set 𝛼 to 4
for all ports. In addition, each switch port has 128KB
static reserved buffer. We allocate 10MB buffer for each
NIC at the host.

Schemes compared: We use DCTCP [5] and set R-
TOmin to 5ms. We compare the following three schemes:

∙ DCTCP K=720KB: This is a standard ECN con-
figuration (current practice). We configure the per-
port (queue) ECN/RED marking threshold to 720KB
(0.72BDP based on S2.2) for 100% throughput.

∙ DCTCP K=200KB: We configure the per-port (queue)
ECN/RED marking threshold to 200KB, which is s-
maller than average per-port buffer size (512KB), to
reduce packet losses.

∙ BCC: BCC requires two ECN configurations at the
switch. We set per-port (queue) ECN/RED marking

threshold to 720KB like the standard ECN configura-
tion. Since 𝜆 is 0.72 for DCTCP and the per-port static
reserved buffer size 𝑆𝑚𝑖𝑛 is 128KB, 𝐵𝑅 = 𝐶×𝑅𝑇𝑇 ×
(1 + 𝜆) − 𝑆𝑚𝑖𝑛 ≈1.6MB. Therefore, 𝐾𝑚𝑎𝑥 ≈2.6MB,
𝐾𝑚𝑖𝑛 = 𝐾𝑚𝑎𝑥 −𝐶 ×𝑁 × ℎ ≈1.8MB and 𝑃𝑚𝑎𝑥=10%.

Performance metrics: We use flow completion time
(FCT) as the performance metric and breakdown FCT
results across small (0,100KB], medium (100KB,10MB]
and large (10MB,∞) flows. Since the performance of
many real-time applications depends on the slowest flow,
we consider the 99th percentile FCT for small flows.

Result analysis: According to Figure 2, we have the
following two key observations.

∙ At low loads, BCC performs similar as K=720KB
while generally outperforming K=200KB, especial-
ly for medium and large flows. With the sufficient
buffer resource, BCC can fully utilize the link capac-
ity without triggering shared buffer ECN/RED. By
contrast, K=200KB still conservatively marks packets,
thus significantly degrading throughput. Compared to
K=200KB. BCC achieves up to ∼13.5% (6362𝜇s to
5503𝜇s) lower average FCT for large flows. K=200KB
only shows some performance advantage (∼100𝜇s) on
small flows, due to its lower switch queueing.

∙ At high loads, BCC generally outperforms the other
two schemes. For small flows, BCC achieves up to
94.4% (5174𝜇s to 291𝜇s) lower 99th FCT compared
to K=720KB. This is because K=720KB causes exces-
sive packet losses due to the exorbitant shared buffer
utilization. The packet loss rate with K=720KB ex-
ceeds 0.3% at 90% load. This results in frequent TCP
timeouts, which seriously increases FCT by at least
5ms (RTOmin). By contrast, at 90% load, the packet
loss rate with BCC is lower than 0.08%.

For large flows, BCC’s performance is within ∼0.4-
2.8% of the K=720KB. This suggests that BCC only
slightly degrades large flows. We think that the lower
packet loss rate with BCC can make up for throughput
loss to some degree. By contrast, DCTCP K=200KB
is still so conservative that it increases FCT by at
least ∼9% compared to K=720KB.

6 RELATED WORK

Bufferless Transports in DCNs: There are some
bufferless transport designs in DCNs. But they may
encounter various deployment challenges. PDQ [14] re-
quires non-trivial modifications to switch hardware. Fast-
pass [18] and Flowtune [17] leverage a centralized sched-
uler, which is easy to suffer from failures and poor scala-
bility. pHost [11] relies on the congestion free network
core, which does not hold for many DCNs. By contrast,
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Figure 2: [Simulation] Flow Completion Time (FCT) results for the web search workload. Results are
normalized to values achieved by DCTCP K=720KB for clear comparison.

BCC is easy to deploy with only one more ECN config-
uration at commodity switches.

PFC: PFC (Priority-based Flow Control) [3] has been
enabled in some DCNs to achieve lossless networks [13].
PFC needs to reserve enough buffer space as the head-
room [13]. The size of the headroom is greatly affected
the propagation delay. Deploying PFC in large-scale D-
CNs results in very large headroom size, which may not
be affordable for commodity switches. Therefore, PFC
is still limited in modest scale (e.g.. thousands of server-
s). Even so, commodity switches can still only support
a small number (e.g., 2) of lossless traffic classes [13].
Moreover, PFC may introduce deadlock problem, causing
damage to the whole network [13].

7 CONCLUSION
In production DCNs, the increase of link speed signif-
icantly outpaces the increase of switch buffer size, re-
sulting in an extremely shallow-buffered environment.
Consequently, prior TCP/ECN solutions suffer from
severe performance degradation. To address it, we intro-
duced BCC, a simple yet effective solution with only
one more shared buffer ECN/RED configuration at com-
modity switches. BCC maintains low packet loss rate
persistently while only slightly degrading throughput
when the buffer becomes insufficient. We demonstrated
its superior performance using extensive simulations.
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