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Abstract—The link speed in production datacenters is growing
fast, from 1Gbps to 40Gbps or even 100Gbps. However, the buffer
size of commodity switches increases slowly, e.g., from 4MB at
1Gbps to 16MB at 100Gbps, thus significantly outpaced by the
link speed. In such extremely shallow-buffered networks, today’s
TCP/ECN solutions, such as DCTCP, suffer from either excessive
packet loss or substantial throughput degradation.

To this end, we present BCC1, a simple yet effective solution
that requires just one more ECN config (i.e., shared buffer
ECN/RED) over prior solutions. BCC operates based on real-
time global shared buffer utilization. When available buffer
space suffices, BCC delivers both high throughput and low
packet loss rate as prior work; Once it gets insufficient, BCC
automatically triggers the shared buffer ECN to prevent packet
loss at the cost of sacrificing little throughput. BCC is readily
deployable with existing commodity switches. We validate BCC’s
hardware feasibility in a small 100G testbed and evaluate its
performance using large-scale simulations. Our results show that
BCC maintains low packet loss rate while slightly degrading
throughput when the available buffer becomes insufficient. For
example, compared to current practice, BCC achieves up to
94.4% lower 99th percentile flow completion time (FCT) for small
flows while degrading average FCT for large flows by up to 3%.

I. INTRODUCTION

Datacenter applications generate a mix of workloads with
both latency-sensitive small messages (e.g., web search) and
throughput-sensitive bulk transfers (e.g., data replication).
Hence, datacenter network (DCN) transport should provide
low latency and high throughput simultaneously to meet the
requirement of applications.

TCP is the dominant transport protocol in production DCNs.
However, it was a challenge for traditional TCP to achieve
good performance on both metrics that are essentially at odds,
especially with shallow-buffered switches. This challenge was
identified almost 10 years ago by Microsoft researchers. To ad-
dress it, they proposed DCTCP [9] which leverages ECN [33]
to strike the tradeoff between throughput and latency, and
showed that a properly configured per-port ECN/RED marking
scheme can well utilize the shallow buffer to achieve both
high throughput and low latency, while still reserving certain
headroom for absorbing micro-bursts. Since then, TCP/ECN
variants2 become popular [9, 28, 36, 39] and are widely
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1Buffer-aware Active Queue Management (AQM) for Congestion Control.
2In this paper, by TCP we generally refer to various TCP-variants, such as

DCTCP [9] and ECN⇤ [39], etc., that are designed for datacenters.

adopted in industry. For example, DCTCP has been integrated
into various OS kernels [4, 5] and deployed in many produc-
tion DCNs [24, 35].

However, in this paper, we call the community’s attention
that this seemingly solved problem resurges and the solution is
now being re-challenged, due to the recent industry trend—To
accommodate more traffic, the link speed of production DCNs
is growing fast from 1Gbps to 40Gbps or 100Gbps, whereas
the buffer size of commodity switches increases slowly (e.g.,
from 4MB at 1Gbps to 16MB at 100Gbps), significantly
outpaced by the link speed. Consequently, the buffer size
per port per Gbps drops dramatically from 85KB to 3.44KB,
leading to an extremely shallow-buffered DCN (§II-C).

We find it is hard for prior TCP/ECN solutions (including
DCTCP) to remain effective when buffer is extremely shallow
(§III). On the one hand, if we use a standard ECN marking
threshold as DCTCP [9], it will cause packet loss even before
ECN starts to react when many ports are active. On the other
hand, if we configure a lower conservative ECN threshold, it
will waste bandwidth and degrade throughput when few ports
are active, since ECN will over-react. Our results show that
such dilemma could lead to either 0.34% packet loss rate (thus
over 50X higher FCT for short flows) or 7.8% FCT slowdown
for large flows (§III-C).

The contribution of this work is to uncover the above prob-
lem, demonstrate its consequences, and introduce an effective
and readily deployable solution called BCC to address it.

At its core, BCC inherits the success of per-port ECN/RED
from DCTCP [9], and further enables shared buffer ECN/RED
to cope with the extremely shallow buffer scenario (§IV). BCC
is indeed simple: one more ECN config (i.e., shared buffer
ECN/RED) is enough! Such shared buffer ECN/RED follows
the vanilla RED algorithm [17] but tracks the occupancy of
the global shared buffer pool to mark packets. It is worthwhile
to note that while this function is available on chips [3, 8, 13],
it was less understood previously and its utility has not been
fully exploited in literature.

BCC’s shared buffer ECN/RED and per-port ECN/RED
work complementarily to each other (§IV-B). When few
ports are active, the available buffer space suffices, per-port
ECN/RED will take effect first to strike the balance of high
throughput and low latency as DCTCP [9]. As more and more
ports become active, the available buffer becomes insufficient,
shared buffer ECN/RED will be triggered first to prevent
packet loss—BCC trades little throughput for latency when
achieving both is impossible. Furthermore, when applying



shared buffer ECN/RED, BCC leverages probabilistic marking
(instead of DCTCP’s single cut-off marking) to desynchronize
flows across ports, in order to avoid global synchronization and
further throughput loss.

We evaluate the performance of BCC using ns-2 simula-
tions over a 128-node leaf-spine topology with two realistic
workloads derived from production DCNs (§V-A). We find:
• At low loads (few ports active), BCC fully utilizes the link

capacity and achieves high throughput. For example, com-
pared to a conservative ECN configuration, BCC achieves
up to 19.3% lower average FCT for large flows;
• At high loads (more ports active), BCC keeps low packet

loss rate while only sacrificing little throughput. Compared
to a standard ECN configuration, BCC achieves up to
94.4% lower 99th percentile FCT for small flows while only
degrading average FCT for large flows by up to 3%;

We further implement BCC in a small testbed with a 100G
Arista 7060CX-32S-F switch connecting 6 servers (§V-B).
We show BCC can be enabled by one more command at
the switch (Figure 8). Our implementation mainly validates
that BCC is readily-deployable and functional as expected,
however, a non-trivial BCC deployment at scale is beyond the
scope of this paper. Our aim is to show the hardware feasibility
of BCC, leaving large-scale deployment as future work.

In what follows, we will introduce the extremely shallow
buffer problem and its impacts in §II and §III. We then present
the BCC design and evaluation in §IV and §V. We finally
discuss related work in §VI and conclude the paper in §VII.

II. BUFFER IS BECOMING EXTREMELY SHALLOW

A. Understanding the switch buffering

On the switching chip, the Memory Management Unit
(MMU) allocates on-chip buffer memory to incoming packets.
The buffer memory is divided into several memory pools,
which can be classified into the following two categories:
• Private pools: dedicated buffers that have been reserved

to switch egress queues.
• Shared pools: buffers that are shared by many (all the)

switch egress queues.
When a packet arrives, the MMU uses the following two

steps to decide how to buffer it (or drop it):
• Enqueue into the private pool: The MMU first checks

the private pool of the destination egress queue. If there is
enough buffer space, the packet will be enqueued into the
private pool. Otherwise, the MMU will move to step 2 for
further checking.
• Enqueue into the shared pool: The MMU uses Dynamic

Threshold (DT) algorithm [15] to allocate buffer space in
the shared pool (more details in §IV-B). If there is no
enough buffer space, the packet will get dropped.

As shown above, packets only get dropped by MMU if
neither the private pool nor the shared pool has enough space.
Moreover, the MMU only drops new arriving packets. Packets
in the pool cannot be pushed out.

B. Buffer requirement of TCP at high-speed
TCP is the dominant transport in today’s datacenters [9,

34, 35]. The switch buffer has a great impact on datacen-
ter TCP variants [9, 36, 39]. Moderate buffer occupancy
is necessary for high throughput [12]. Meanwhile, we also
need certain buffer headroom to absorb transient busrts (e.g.,
incast [9, 37, 38]). Insufficient switch buffer would cause: 1)
low throughput, thus slowing bulk transfers; and 2) packet
losses, thus resulting in long tail FCT for short flows. The
tail FCT matters because the performance of many interactive
applications seriously degrades even if a small fraction of
messages are late [16].

Unlike Internet, the number of concurrent large flows in
DCN is typically small [9]. In such case, to achieve full
throughput, TCP requires at least C⇥RTT⇥� buffer space per
port, where C is the link capacity, RTT is the round-trip time,
and � is a characteristic constant depending on the congestion
control algorithm (e.g., � = 1 for ECN⇤ [39]). In recent
years, the link speed in DCNs has increased significantly, from
1Gbps to 40/100Gbps. However, the base RTT does not change
much as it is mainly determined by processing overhead from
multiple sources. Thus, the buffer demand of TCP increases
nearly in proportion to the link speed.
Testbed measurement: We measure the buffer demand of
conventional TCP in our testbed. Three servers (Mellanox CX-
4 100Gbps NIC, Linux kernel 3.10.0) are connected to an
Arista switch. To reduce system overhead, various optimiza-
tion techniques, e.g., TCP segmentation offload (TSO) and
generic receive offload (GRO), are enabled. The base RTT in
our testbed is ⇠30µs. We consider DCTCP [9] and ECN⇤ [39]
(regular ECN-enabled TCP which simply cuts window by half
in the presence of an ECN mark). We use open source DCTCP
implementation from Linux 3.18 kernel. To fully utilize the
link capacity, we generate 16 TCP long-lived flows using
iperf from two senders to a receiver. We vary the ECN/RED
marking threshold3 at the switch and measure the aggregate
throughput at the receiver side. For a TCP variant, its basic
buffer requirement approximately equals to the minimum ECN
threshold achieving 100% utilization.

Figure 1 shows aggregate throughput results with different
ECN marking thresholds. As expected, ECN⇤ starts to achieve
100% throughput on 325KB which is close to the bandwidth-
delay product (BDP) in our testbed. Our measurement also
shows that DCTCP performs similar as ECN⇤ in practice. The
minimum ECN marking threshold that DCTCP requires for
100% throughput is 250KB. The reader may wonder why our
experiment observation of DCTCP seems inconsistent with
theory results in [10] (0.17⇥BDP buffering is enough for
100% throughput). We believe this is mainly due to packet
bursts that are caused by various interactions between the OS
and the NIC (e.g., TSO, GRO). Hence, a much larger ECN
marking threshold is required to absorb bursts. Such complex
burst behaviors are difficult to capture by ideal fluid model

3We set the maximum and minimum queue length thresholds of RED [17]
to the same value as previous work [9, 39] suggests.



ASIC Broadcom 56538 Broadcom Trident+ Broadcom Trident II Broadcom Tomahawk Barefoot Tofino
Capacity (ports ⇥ BW) 48 p ⇥ 1 Gbps 48 p ⇥ 10 Gbps 32 p ⇥ 40 Gbps 32 p ⇥ 100 Gbps 64 p ⇥ 100 Gbps
Total buffer 4MB 9MB 12MB 16MB (4 MMUs) 22MB
Buffer per port 85KB 192KB 384KB 512KB 344KB
Buffer per port per Gbps 85KB 19.2KB 9.6KB 5.12KB 3.44KB

TABLE I: Buffer and capacity information of commodity datacenter switching chips. Note that Broadcom Tomahawk
has 4 switch cores, each with its own MMU and 4MB buffer [1, 2].
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Fig. 1: [Testbed] Aggregate TCP throughput with different
ECN/RED marking thresholds

in [10], thus resulting in the theory-practice gap [9, 39]. We
also conduct the above experiment using Windows Server
2012 R2 and observe that DCTCP requires ⇠60-70% BDP
buffering for 100% throughput in practice.

Production DCNs: Compared to the small testbed, produc-
tion DCNs are more complex and have larger base RTTs. At
the end host, packets may experience high kernel processing
delay when CPUs are busy [20]. In virtualized environ-
ments, hypervisors introduce extra processing overhead. In the
network, packets experience non-negligible processing delay
when going through various middleboxes [18, 29]. Long-
distance cables and multiple switch hops also bring several-
microsecond delay. All these factors greatly increase the actual
latency in production environments. A measurement study [21]
shows that production DCNs have up to 100s of µs latency.
Such latency transfers to a large buffer demand. Consider a
100Gbps network with 100µs base RTT, the per-port buffer
requirement of ECN⇤ reaches 1.25MB (100Gbps⇥ 100µs).

C. Buffer becomes increasingly insufficient

However, the buffer size of commodity switches does not
increase as expected. We list buffer and capacity information
of some widely used commodity switching chips in Table I.
The link capacity significantly outpaces the buffer size, re-
sulting in decreasing buffer per port per Gbps (from 85KB to
3.44KB). The reasons behind are at least two-fold.

• The memory used in switch buffers is high-speed SRAM.
Compared to DRAM, SRAM is more expensive as it
requires more transistors.

• The area increases with the memory size. When the area
becomes large, the read/write latency will increase, making
the memory access speed hard to match the link speed.
Therefore, most commodity switches in DCNs are shallow

buffered. We envision that such trend will hold for future
200/400Gbps switching chips.

III. PROBLEMS CAUSED BY EXTREMELY SHALLOW BUFFER

In this section, we demonstrate the performance impair-
ments of existing TCP/ECN solutions in high-speed extremely
shallow-buffered DCNs.

A. Standard ECN configuration causes excessive packet losses

Most datacenter TCP variants [9, 36, 39] leverage ECN
to achieve high throughput with certain buffering. In current
practice, DCN operators configure a moderate ECN marking
threshold (i.e., C ⇥ RTT ⇥ �) for them to achieve 100%
throughput, which we called standard ECN configuration in
this paper. However, such standard ECN configuration is likely
to overfill extremely shallow buffers when multiple ports are
active, causing packet losses and long tail latency.

Take Broadcom Tomahawk with 16MB buffer and 32
100Gbps ports as an example. If TCP desires 1MB marking
threshold per port, the switch buffer will be overfilled when
more than half of total ports (�16) are active. What’s worse,
Tomahawk has 4 switch cores to achieve desired performance
at the high-speed. Each core has its own MMU and 4MB
shared buffer [1, 2]. Dynamic buffer sharing only happens
within the single core. Therefore, the buffer of a Broadcom
Tomahawk chip will be overfilled when more than 4 ports
attached to a single core are congested.

B. Conservative ECN configuration degrades throughput

Realizing the above limitation, a straight forward solution is
to configure a lower ECN marking threshold (e.g., smaller than
average per-port switch buffer), thus leaving buffer headroom
to reduce packet losses. However, such conservative ECN
configuration causes unnecessary bandwidth wastage when
few ports are busy. For example, when only one port is active,
this method still throttles TCP throughput despite the sufficient
buffer space available.

C. Simulation Demonstration

Since we do not have enough servers to saturate the switch
buffer in the testbed, we use ns-2 [7] simulations to quantify
the impact of the above two performance impairments.
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Fig. 2: [Simulation] FCT and packet loss rate results for the web search workload with the single switch topology.
Note that we normalize FCT results to values achieved by DCTCP K=200KB.

Topology: 32 servers are connected to a switch using 100Gbps
links. The base latency is 80µs. Hence, the BDP is 80µs ⇥
100Gbps = 1MB. The jumbo frame (9KB MTU) is enabled.

Buffer: To emulate Broadcom Tomahawk, we attach every 8
switch ports to a 3MB shared buffer pool. Each port also has
128KB private buffer. All switch ports have the same ↵ = 4
for dynamic buffer sharing (see §IV-B for introduction of ↵).

Workloads: Among 32 servers, 24 servers send traffic to the
rest 8 servers. Note that the 8 ports connected to receivers are
attached to the same shared buffer pool. We generate flows
according to the web search distribution [9]. We vary the
network utilization from 40% to 90%.

Schemes compared: We enable DCTCP at the end host and
set RTOmin to 5ms. Our testbed measurement (§II-B) suggests
that 0.72BDP should be enough for DCTCP to achieve full
link utilization. Hence, we consider two marking thresholds:
720KB (standard) and 200KB (conservative).

Performance metrics: We use FCT as the primary metric
and also measure packet loss rate. For clear comparison, we
normalize FCT results to values achieved by 200KB threshold.

Results analysis: Figure 2 shows FCT and packet loss rate.
We make the following two observations.

At low loads (few ports active), the 720KB threshold
(standard) obviously outperforms the 200KB threshold (con-
servative). For example, at 40% load, compared to the 200KB
threshold, the 720KB threshold achieves ⇠ 6% lower overall
average FCT and ⇠ 8.7% lower average FCT for large flows.
Moreover, both solutions achieve near zero packet loss rate
when the load is smaller than 60%. In such scenarios, the
switch has sufficient buffer. But the conservative ECN config-
uration still leaves much buffer space unused, thus seriously
degrading throughput. This validates our analysis in §III-B.

At high loads (more ports active), the 720KB thresh-
old causes excessive packet losses, thus degrading the 99th
percentile FCT for small flows. For example, as shown in
Figure 2(d), at 90% load, 0.34% packets are dropped with the
720KB threshold, which is much higher than the 0.1% network
service level agreement (SLA) threshold used in Microsoft
datacenters [21]. Such high packet loss rate causes numerous
packet retransmissions and 10,390 TCP timeouts (100,000
flows). As a result, at 90% load, the 99th percentile FCT

for small flows with the 720KB threshold is ⇠51.2 (5380µs
to 103µs) higher than that with the 200KB threshold. This
confirms our analysis in §III-A.

IV. SOLUTION

A. Design Goals

Good performance: We seek to achieve both high throughput
and low packet loss rate simultaneously. However, as shown in
§III, the scarce buffer resource in switching chips may make
it difficult to guarantee both metrics in all scenarios. Like
prior work [22, 26], when contradiction arises between the
two metrics, we prefer low packet loss rate at the cost of
sacrificing little throughput. This is because the bandwidth is
generally plentiful in DCNs, while a small increase in packet
loss rate (e.g., � 0.1%) can seriously degrade the performance
of user-facing applications and in turn, operator revenue [26].
Deployability: Our solution should work with existing com-
modity switches and be backward compatible with legacy
TCP/IP stacks. Modifying switch hardware is costly as a new
ASIC often takes years to design and implement. We note that
some prior DCN transport designs [11, 14, 19, 22, 31, 32, 42]
may also work with extremely shallow buffers. But, as we will
discuss in §VI, these solutions require non-trivial modifications
to switch hardware and network stacks or make unrealistic
assumptions, making them hard to deploy in practice.

B. BCC Mechanism

Overview: BCC keeps conventional TCP/ECN algorithm at
the end host, and its core is to perform global buffer-aware
ECN marking at the switch. When the shared buffer utilization
is low, BCC marks packets with standard ECN configuration
to achieve both high throughput and low packet loss rate.
When the utilization goes high, BCC marks packets more
aggressively to prevent packet loss with minimal throughput
loss. BCC realizes this with just one more ECN configuration
in existing commodity switches.
Details: We now describe the mechanism of BCC in detail.
We model the switch as a shared-buffer output-queued switch.
Variables and parameters used in the model are listed in
Table II and III. We start from the simplest assumption that
each switch port only has a single egress queue and no buffer



Parameter Description
B Switch shared buffer size
N Total number of switch egress queues
C Capacity of the switch queue

RTT Base round-trip time
↵ Parameter for shared buffer allocation

BR
Minimum per-queue required buffer for high

throughput and low packet loss rate

Kmin
Minimum marking threshold for shared buffer

ECN/RED

Kmax
Maximum marking threshold for shared buffer

ECN/RED

Pmax
Maximum marking probability for shared buffer

ECN/RED
h See Equation 3

TABLE II: Shared buffer model parameters

Variable Description
t Time

Qi(t) Length of switch queue i at time t
T (t) Queue length control threshold at time t

TABLE III: Shared buffer model variables

is reserved for each queue. Hence, all buffers are dynamically
allocated from a single shared buffer pool. The switch has
B shared buffer space and N egress queues in total. Any
TCP/ECN variant (e.g., [9, 28, 36, 39]) can be enabled at
the end. The standard ECN setting is configured on each
port/queue for high throughput.

Today’s commodity switching chips typically use Dynamic
Threshold (DT) algorithm [15] for dynamic buffer allocation.
The shared buffer allocated to a queue is controlled by a
parameter ↵. At time t, the MMU will compute a threshold
T (t) to limit the queue length. T (t) is actually a function of
the unused shared buffer size and ↵ as follows:

T (t) = ↵⇥ (B �
NX

i=1

Qi(t)) (1)

A packet arriving in queue i at time t will get dropped if
Qi(t) � T (t). As analyzed in [15], if there are M active
queues, each queue can eventually get ↵ ⇥ B/(1 + M ⇥ ↵)
buffer space. Obviously, the more active queues we have, the
smaller buffer space each queue can get from the shared pool.
Moreover, a large ↵ can help a queue to get more buffer
space. But a too large ↵ can cause short-term imbalanced
buffer allocation. Typically, ↵ values are set powers of 2 for
implementation simplicity (e.g., 1/128 to 8 in Tomahawk).

Assume that our TCP variant (with standard ECN) requires
at least BR buffer space per queue to achieve both high
throughput and low packet loss rate. We simply treat BR as
a known constant here and show how to determine BR later
in §IV-C. When T (t) > BR, it means that the switch has
sufficient buffer space to achieve both goals simultaneously.
Hence, BCC just marks packets with the standard ECN
configuration without degrading throughput.

When T (t)  BR, it indicates that the shared buffer pool is
highly utilized by many active ports. In such scenarios, only
relying on standard ECN configuration may cause excessive

packet losses as analyzed in §III-A. Hence, BCC throttles the
shared buffer occupancy to avoid excessive packet losses. By
Equation 1 and T (t)  BR, we derive that

NX

i=1

Qi(t) � B �BR/↵ (2)

Here
NX

i=1

Qi(t) is the occupancy of the shared buffer pool

at time t, and B, BR and ↵ are all known parameters. This
implies that, to prevent excessive packet losses, BCC should
throttle the shared buffer occupancy from exceeding a static
threshold B �BR/↵.

To realize this, we exploit the shared buffer ECN/RED
which is already available in commodity switches [3, 8, 13].
Shared buffer ECN/RED follows the original RED [17] but
tracks the occupancy of a shared buffer pool to mark packets.
Note that all transmitted packets in the shared buffer pool can
get marked regardless of their ingress/egress ports and queues.
Therefore, it can effectively control shared buffer occupancies.
Moreover, shared buffer ECN/RED can be used in combination
with other ECN/AQM configurations at the switch. When
multiple ECN configurations enabled, a packet gets marked if
anyone decides to mark it first. Hence, BCC works as follows:
• When few ports are active, the available buffer is abundant

and per-port standard ECN configuration will take effect
first to strike the balance of high throughput and low latency
as prior work [9]. Both high throughput and low packet loss
rate can be achieved.
• When more and more ports become active, the available

buffer becomes insufficient. Shared buffer ECN/RED will
be automatically triggered first to prevent packet loss at the
cost of degrading throughput slightly.
Furthermore, BCC performs a RED-like probabilistic mark-

ing over shared buffer ECN by setting max and min thresholds
(Kmin and Kmax in Table II) to different values. This is
because, if we use a single cut-off threshold like DCTCP [9],
all flows across ports sharing the same buffer pool are likely
to reduce their windows at the same time. This causes global
synchronization problem and affects throughput [17]. With
probabilistic marking, we effectively desynchronize flows’
window reduction activities and improve throughput.

C. BCC Parameters
We now derive BCC parameters. First, we determine BR,

the minimum per-queue (port) buffer size for high throughput
and low packet loss rate. With BR fixed, we then decide mark-
ing thresholds and probability of shared buffer ECN/RED.
In this section, we give several useful rules-of-thumbs to set
parameters while leaving optimal settings as future work.
Determine BR: Given the number of concurrent large flows
in DCN is typically small [9], we start from a simple scenario
where several synchronized long-lived flows share a bottleneck
link. In such scenario, we need C⇥RTT⇥� per port buffering
to achieve full throughput.



Fig. 3: [Simulation] CDF of buffer occupancies of the
congested port at 90% load.

However, the lag in ECN control loop imposes extra buffer
requirement to avoid packet losses. When a packet gets ECN
marked at switch [43], the sender will reduce its window
after one RTT . During this interval, extra buffer space is
required to absorb more packets. We assume that the receiver
acknowledges every MTU-sized data packet. We consider the
most challenging TCP slow start phase. As an ACK packet can
trigger two MTU-sized data packets, the aggregate sending
rate reaches 2C and the switch queue gradient is C. Thus,
we need C ⇥ RTT extra buffer to avoid packet loss and
C ⇥RTT ⇥ (1 + �) buffer in total to achieve both goals.

We next consider a realistic scenario that a mix of small
and large flows arrive and leave dynamically. In this case,
it is less likely that all active flows enter slow start phase
simultaneously, thus reducing the switch queue gradient. How-
ever, the arrivals and departures of flows also affect the switch
queue gradient, which is hard to model. Hence, we run a ns-
2 simulation instead. In this simulation, 31 senders generate
traffic to the same receiver according to the web search
workload [9]. The average link utilization is 90%. We increase
the shared buffer to 10MB, which eliminates packet loss in the
network. The other settings are same as those in §III-C. We
configure the per-port ECN/RED marking threshold to 720KB
(C ⇥ RTT ⇥ �). Thus, C ⇥ RTT ⇥ (1 + �) = 1720KB.
Figure 3 plots the CDF of buffer occupancies of the congested
port. Around 25% of them are larger than 720KB, suggesting
C ⇥ RTT ⇥ � is not enough. The 99.99th percentile buffer
occupancy is 1609KB < C ⇥ RTT ⇥ (1 + �). Hence, we
envision that C⇥RTT ⇥ (1+�) works well for mixed flows.

In summary, we recommend setting BR to C ⇥ RTT ⇥
(1 + �). As C and � are both known and RTT can be
measured [21, 39] in production datacenters, operators can
easily compute the value of BR.

Determine parameters for shared buffer ECN/RED: We
leverage shared buffer ECN/RED to prevent the shared buffer
occupancy from exceeding B�BR/↵. To achieve fast reaction
to bursty traffic, we mark packets based on the instantaneous
buffer occupancy. Shared buffer ECN/RED has 3 parameters
to configure: min threshold Kmin, max threshold Kmax and
max probability Pmax. When the buffer occupancy is: 1)

below Kmin, no packet is marked; 2) between Kmin and
Kmax, packets are marked probabilistically; 3) above Kmax,
all packets get marked.

As analyzed before, if we set Kmin = Kmax, flows across
ports sharing a buffer pool are likely to get synchronized,
resulting throughput loss. Therefore, we decide to perform a
probabilistic marking by setting Kmin < Kmax = B�BR/↵.
The key here is to control the range between Kmin and
Kmax. A too small Kmax�Kmin will make buffer occupancy
regularly ramp up beyond Kmax, still causing global synchro-
nization and even packet losses. As original RED work [17]
suggests, Kmax�Kmin should be made sufficiently large (e.g.,
larger than typical increase in the shared buffer occupancy
during a RTT) to avoid global synchronization. Hence, the
choice of Kmax�Kmin depends on both the number of ports
N and link capacity C. In BCC, we set Kmin as follows:

Kmin = B �BR/↵� C ⇥N ⇥ h (3)

where h is a parameter to control Kmax � Kmin. In our
evaluation, we set h = 8µs. For the maximum marking
probability Pmax, we set it to 10% as [17] suggests.

V. EVALUATION

In this section, we evaluate BCC using both large-scale
ns-2 [7] simulations and small-scale testbed experiments. We
highlight some of the results as follows:
• Our simulations (§V-A) with realistic workloads demon-

strate BCC’s superior performance in large-scale networks:
• At low loads, BCC fully utilizes the link capacity and

achieves up to 19.3% lower average FCT for large flows
compared to a conservative ECN configuration.

• At high loads, compared to a standard ECN configura-
tion, BCC achieves up to 94.4% lower 99th percentile
FCT for small flows while only degrading large flow
FCT by up to 3%.

• Our testbed implementation (§V-B) validates that BCC is
easy to configure at switches and functional as expected.

A. Large-scale Simulations

Topology: We simulate a 128-host leaf-spine topology with
8 leaf (ToR) switches and 8 spine (Core) switches. Each leaf
switch has 16 100Gbps down links to hosts and 8 100Gbps up
links to spines. Hence, we have a 2:1 oversubscription, which
is common in production datacenters. We employ Equal-Cost
Multi-Path routing (ECMP) for load balancing. The base fabric
RTT across the spine is ⇠80µs of which 72µs is spent at the
end host. The BDP is 1MB. The jumbo frame is enabled.
Buffer: Our leaf and spine switches have 24 and 8 ports,
respectively. To emulate Broadcom Tomahawk chip, we at-
taches every 8 switch ports to a 3MB shared buffer pool.
Hence, the leaf switch has 3 shared buffer pools while the
spine switch only has one. At the leaf switch, 8 up ports,
which are connected to spines, are attached to a shared buffer
pool while the rest 16 down ports are attached to the other
2 shared buffer pools. We set ↵ to 4 for all switch ports. In
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Fig. 4: [Simulation] FCT results for the web search workload. Results are normalized to values of BCC.
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Fig. 5: [Simulation] FCT results for the cache workload. Results are normalized to values of BCC.

addition, each switch port has 128KB static reserved buffer.
At the end host, we allocate 10MB static buffer for each NIC.

Workloads: We generate realistic workloads according to two
flow size distributions in production: web search [9] from Mi-
crosoft and cache [34] from Facebook. Both distributions are
heavy-tailed. We generate flows according to a Poisson process
and choose the source/destination for each flow uniformly at
random. We vary the flow arrival rate to achieve desired load
in the fabric. Each simulation lasts for 100,000 flows.

Schemes compared: We use DCTCP [9] as the transport
protocol. We set RTOmin to 5ms and initial window to 20
packets (180KB). Note that 5ms is the minimum effective
RTOmin for many Linux kernel versions [25]. We exclude
PFC due to its large buffer reservation requirement. We
compare the following three schemes:

• DCTCP K=720KB: This is the standard ECN configura-
tion (current practice). We configure the per-port (queue)
ECN/RED marking threshold to 720KB (0.72BDP based
on measurement in §II-B) to achieve 100% throughput.

• DCTCP K=200KB: This is the conservative ECN con-
figuration. We configure the per-port (queue) ECN/RED
marking threshold to 200KB to reduce packet losses.

• BCC: BCC requires two ECN configurations at the
switch. We set per-port (queue) ECN/RED marking thresh-
old to 720KB like the standard ECN configuration. Since �
is 0.72 for DCTCP and the per-port static reserved buffer
size Smin is 128KB, BR = C ⇥ RTT ⇥ (1 + �) �
Smin ⇡1.6MB. Therefore, Kmax = B � BR/↵ ⇡2.6MB.
Since each buffer pool is shared by N = 8 ports and the
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Fig. 6: [Simulation] Packet loss rate results.

recommendation value for h is 8µs, Kmin = Kmax �C ⇥
N ⇥ h ⇡1.8MB. Pmax is set to 10%.

Performance metrics: We use FCT as the primary metric
and also measure packet loss rate in certain simulations
for analysis. Besides overall, we breakdown FCT results
across small (0,100KB], medium (100KB,10MB] and large
(10MB,1) flows. Since the request completion time of many
large-scale responsive applications depends on the slowest
flow, we consider the 99th percentile FCT for small flows.
For the rest flows, we consider their average FCT. For clear
comparison, we normalize all FCT results to values achieve
by DCTCP K=720KB by default.
Results analysis: Figure 4 and 5 give FCT results for two
workloads. We also plot packet loss results in Figure 6. We
make the following observations.

At low loads, BCC performs similarly as K=720KB while
outperforming K=200KB. K=200KB only shows some perfor-
mance advantage (⇠100µs) on small flows.

As shown in Figure 6, K=720KB keeps low packet loss rate



when the load is smaller than 55%. It indicates that the switch
has enough buffer space to achieve both high throughput and
low packet loss rate at low loads. However, K=200KB still
marks packets aggressively regardless of the sufficient buffer
space, thus causing much unnecessary bandwidth wastage. In
such scenarios, due to the low shared buffer occupancy, BCC
marks packets just as the standard per-port ECN configuration
without triggering the shared buffer ECN. Therefore, BCC
can fully utilize the link capacity. Compared to K=200KB,
BCC achieves up to ⇠13.5% (6362µs to 5503µs) and ⇠19.3%
(9205µs to 7424µs) lower average FCT for large flows, in the
web search and cache workloads, respectively.

At high loads, BCC generally outperforms the other two
schemes. Specifically, BCC delivers the best performance
for medium flows while approximating the best scheme for
small flows (i.e., K=200KB) and large flows (i.e., K=720KB)
respectively.

For small flows, BCC achieves up to 94.4% (5174µs
to 291µs) and 94.2% (5135µs to 296µs) lower 99th FCT
compared to K=720KB, in the web search and cache work-
loads, respectively. This is because K=720KB causes excessive
packet losses due to the exorbitant shared buffer utilization.
As shown in Figure 6, the packet loss rate with K=720KB
approaches 0.1% (SLA threshold used in Microsoft [21]) at
75% load and exceeds 0.3% at 90% load. This results in
frequent TCP timeouts, which seriously increases FCT by
at least 5ms. For example, at 90% load, K=720KB leads to
11,434 timeouts for web search workload and 5,935 timeouts
for cache workload (100,000 flows in total). By contrast, BCC
can greatly reduce packet losses even though it cannot achieve
near lossless performance as K=200KB. At 90% load, the
packet loss rate with BCC is lower than 0.08% for both
workloads. Hence, BCC only causes 2,432 timeouts for web
search workload and 1,278 timeouts for cache workload.

For large flows, BCC achieves comparable performance as
K=720KB. BCC’s performance is within ⇠0.4-2.8% of the
K=720KB for the web search workload and within ⇠0.3-3.0%
for the cache workload. This suggests that the performance
trade-off made by BCC does not impact too much on large
flows. We think that the lower packet loss rate with BCC
can make up for throughput loss to some degree. By contrast,
K=200KB is still so conservative that it increases FCT by at
least ⇠9% compared to K=720KB for both workloads.

B. Small-scale Testbed Validation

Due to scale limitation, we only use testbed micro-
benchmarks to 1) validate that BCC is readily-deployable at
commodity switches, and 2) validate its functionalities in two
scenarios: single MMU and multiple MMUs.

Testbed setup: Our testbed consists of 6 servers connected to
an Arista 7060CX-32S-F 100Gbps switch. The 6 servers and
6 switch ports are denoted as S1-S6 and P1-P6, respectively.
Pi is the port connected to Si. We use S5 and S6 as receivers.
S1 and S2 send traffic to S5. S3 and S4 send traffic to S6.
Hence, the ports P5 and P6 are congested.
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Fig. 7: [Testbed] Queue length samples of port 5 and 6.
Note that shared buffer ECN/RED is disabled. Traffic to
P5 is TCP while traffic to P6 is UDP.
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Fig. 8: Command to enable shared buffer ECN/RED on
Arista EOS [8]. Both minimum and maximum thresholds
are set to 500KB.

Our Arista switch is built with Broadcom Tomahawk [6]
chip. It has 4 MMUs, each with 4MB buffer. The dynamic
buffer allocation only happens within the single MMU. In
each MMU, ⇠1MB buffer has been reserved and 3MB buffer
can be dynamically allocated. Each server has a Mellanox
CX-4 NIC and runs Linux 3.10.0 kernel. Various system
optimizations, e.g., TSO and GRO, are enabled. We use
ECN⇤ [39] (regular ECN-enabled TCP) in experiments as it
is more sensitive to different ECN marking settings. To fully
utilize the link capacity, we configure the per-queue ECN/RED
marking threshold to 325KB according to Figure 1.

Validating BCC in a single MMU: In this experiment, two
congested ports P5 and P6 are attached to the same MMU.
S1 and S2 start 16 long-lived TCP flows using iperf to
S5. S3 and S4 generate 100Gbps UDP traffic to S6 using a
high performance packet generator. We configure ↵ to 1 for
dynamic buffer allocation.

Figure 7 gives queue length sample variations of two
congested ports. Due to the impact of ECN marks, queue
length of P5 remains very low. By contrast, UDP traffic to S6
does not react to ECN marks (and drops) at all, thus building
up large queues in P64. In theory, P6 can get almost half of
the total shared buffer space according to dynamic threshold
algorithm [15], which is ⇠1.5MB. Our testbed results closely
match the theory results.

Now, we enable shared buffer ECN/RED using a single
command shown in Figure 8. For simplicity, both minimum

4Our switch performs ECN/RED marking (or dropping non-ECT packets)
at the egress side rather than ingress side. Therefore, it cannot prevent queue
build-ups caused by UDP traffic.
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Fig. 9: [Testbed] Aggregate goodput of TCP traffic to S5
with different shared buffer ECN thresholds.

and maximum thresholds of shared buffer ECN/RED are set
to the same value in our testbed experiments.

Figure 9 shows aggregate TCP goodput with different
marking thresholds. As analyzed above, UDP traffic to S6 does
not react to ECN marks and drops at all. Thus, switch queues
in P6 keep oscillating around 1.5MB, regardless of the shared
buffer ECN/RED settings. When the shared buffer ECN/RED
marking threshold is set to 500KB, all TCP packets to S5 get
ECN marked, resulting in ⇠8Gbps TCP goodput. After we
increase the threshold above 1.5MB, the TCP goodput keeps
increasing and reaches 90Gbps with 1750KB threshold.

The above experiments 1) shows that BCC is easy to deploy
at commodity switches, and 2) validates BCC’s functionality
in a single MMU.

Validating BCC in multiple MMUs: Some switching chips
(e.g., Broadcom Tomahawk) have multiple MMUs and dy-
namic buffer allocation only happens within the single MMU.
BCC also takes effect in such architecture as the shared buffer
ECN/RED operates in a per-MMU manner. Each MMU has its
own shared buffer ECN/RED and only marks its own packets
based on its own shared buffer occupancy.

In this experiment, we validate BCC in multiple MMUs.
For this purpose, two congested ports P5 and P6 are attached
to different MMUs. S1 and S2 start 16 long-lived TCP flows to
S5. S3 and S4 start 16 long-lived TCP flows to S6. As shown
in Table IV, without shared buffer ECN/RED, both S5 and
S6 can receive ⇠90Gbps goodput as expected. After we set
shared buffer ECN threshold to 350KB, the goodput results
remain unchanged. The is because shared buffer ECN/RED
operates in a per-MMU manner: each MMU has its own
shared buffer ECN/RED and only marks its own packets based
on its own shared buffer occupancy. In a MMU, when there is
only a single congest port and the per-port (queue) threshold is
smaller than the shared buffer threshold, per-port (queue) ECN
marking will be triggered earlier than shared buffer ECN. As a
result, shared buffer ECN/RED does not take any effect. But
if we reduce the shared buffer threshold to 150KB, shared
buffer ECN/RED starts to take effect, reducing TCP goodput
to ⇠78Gbps. This experiment validates BCC’s functionality
in multiple MMUs.

Shared buffer thresh. (KB) N/A 350 150
Goodput of S5 (Gbps) 91.02 90.94 78.43
Goodput of S6 (Gbps) 89.42 89.39 77.89

TABLE IV: [Testbed] TCP goodput results with different
shared buffer ECN thresholds. Note that packets to S5 and
S6 are stored in different MMUs.

VI. RELATED WORK

The literature on DCN transport is vast. Here, we only
cover some closely related work that we have not discussed
elsewhere in the paper.

Bufferless DCN transport: Many DCN transport de-
signs [11, 14, 19, 22, 27, 31, 32, 42] can cope with extremely
shallow switch buffers. However, they are hard to deploy in
production DCNs due to their non-trivial modifications to
switch hardware or network stacks. For example, pHost [19],
ExpressPass [14] and Homa [27] require clean-slate network
stacks. HULL [11] and TFC [42] adopt TCP at the end
host, but require non-trivial modifications to switch hardware.
Fastpass [32] and Flowtune [31] require changes to network
stacks and leverage a centralized scheduler, which suffers from
failures and scalability issues. NDP [22] modifies both switch
hardware and network stacks. Furthermore, some of them
make unrealistic assumptions to the underlying network. For
example, pHost [19] and NDP [22] assume that the congestion-
free network core, which does not hold for many production
DCNs. ExpressPass [14] requires path symmetry, which incurs
increased configuration complexity with ECMP. In contrast to
all these efforts, BCC is easy to deploy as it only requires one
more ECN configuration at commodity switches.

Other work: PERC [23] targets at fast convergence in high-
speed DCNs. DIBS [40] achieves a near lossless network by
detouring packets. Some efforts [30, 37, 41] have been made
to reduce the impact of packet losses in DCNs. They are all
complementary to our work.

VII. CONCLUSION

In production DCNs, the increase of link speed significantly
outpaces the increase of switch buffer size, resulting in an
extremely shallow-buffered environment. Consequently, prior
TCP/ECN solutions suffer from severe performance degrada-
tion. To address this problem, we have introduced BCC, a
simple yet effective solution with only one more shared buffer
ECN/RED config at commodity switches. BCC operates based
on real-time shared buffer utilization. It maintains low packet
loss rate persistently while only slightly degrading throughput
when the buffer becomes insufficient. We validated BCC’s
feasibility in a 100G testbed and demonstrated its superior
performance over current practice using extensive simulations.
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