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Abstract— Geographically distributed applications hosted on
cloud are becoming prevalent. They run on cross-datacenter
network that consists of multiple data center networks (DCNs)
connected by a wide area network (WAN). Such a cross-DC
network poses significant challenges in transport design because
the DCN and WAN segments have vastly distinct characteristics
(e.g., buffer depths, RTTs). In this paper, we find that existing
DCN or WAN transport reacting to ECN or delay alone do not
(and cannot be extended to) work well for such an environment.
The key reason is that neither of the signals, by itself only,
can simultaneously capture the location and degree of conges-
tion, mainly due to the discrepancies between DCN and WAN.
Motivated by this, we present the design and implementation of
GEMINI that strategically integrates both ECN and delay signals
for cross-DC congestion control. To achieve low latency, GEMINI
bounds the inter-DC latency with delay signal and prevents the
intra-DC packet loss with ECN. To maintain high throughput,
GEMINI modulates the window dynamics and maintains low
buffer occupancy utilizing both congestion signals. GEMINI is
implemented in Linux kernel and evaluated by extensive testbed
experiments. Results show that GEMINI achieves up to 53%,
31%, 76% and 2% reduction of small flow average completion
times, and up to 34%, 39%, 9% and 58% reduction of large
flow average completion times compared to TCP Cubic, DCTCP,
BBR and TCP Vegas.

Index Terms— DCN, WAN, transport, congestion control.

I. INTRODUCTION

APPLICATIONS running in geographically distributed set-
ting are becoming prevalent [2]–[9]. Large-scale online
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Fig. 1. Cross-datacenter network.

services often share or replicate their data into multiple DCs in
different geographic regions. For example, a retailer website
runs a database of in-stock items replicated in each regional
data center for fast serving local customers. These regional
databases synchronize with each other periodically for the
latest data. Other examples include image sharing on online
social networks, video storage and streaming, geo-distributed
data analytics, etc.

These applications run on cross-datacenter (DC) network
(Figure 1) that consists of multiple data center networks
(DCNs) connected by a wide area network (WAN). The wide
area and intra-DC networks have vastly distinct characteristics
(§II-A). For WAN, achieving high network utilization is a
focus and switches have deep buffers. In contrast, latency is
critical in DCN and switches have shallow buffers. While there
are numerous transport protocols designed for either DCN or
WAN individually, to the best of our knowledge, very little
work has considered a cross-DC environment consisting of
both parts at the same time.

To handle congestion control in either DCN or WAN, exist-
ing solutions have leveraged either ECN (e.g., DCTCP [10]
and DCQCN [11]) or delay (e.g., Vegas [12] and
TIMELY [13]) as the congestion signal, and successfully deliv-
ered compelling performance in terms of high-throughput and
low-latency [10]–[16]. Unfortunately, due to the discrepancies
between DCN and WAN, none of existing solutions designed
for DCN or WAN works well for a cross-DC network (§II-B).
Even worse, it is unlikely, if not impossible, that they can be
easily extended to work well.

The fundamental reason is that these solutions only exploit
one of the signals (either ECN or delay), which suffices
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TABLE I

BUFFER SIZE FOR COMMODITY DCN SWITCHES AND WAN ROUTERS

for a relatively homogeneous environment. However, by their
nature, ECN or delay alone cannot handle heterogeneity. First,
ECN is difficult to configure to meet requirements of mixed
flows. The inter-DC and intra-DC flows coexist in cross-DC
network, with RTTs varying by up to 1000×. Small RTT flows
require lower ECN thresholds for low latency; while large
RTT flows require larger ones for high throughput. In fact,
tuning ECN threshold may not work, because DC switch
shallow buffers can be easily overwhelmed by bursty large-
BDP cross-DC traffic. For example, DCN can account for
4−20× more packet losses than WAN in experiments under
realistic workload (see Table II). Moreover, ECN may not be
well supported in WAN.

Meanwhile, delay signal, by itself, is limiting in simulta-
neously detecting congestion in WAN and DCN. Cross-DC
flows may congest either in WAN or DCN, while delay signal
cannot distinguish them given its end-to-end nature. This leads
to a dilemma of either under-utilizing WAN (deep-buffered)
links with small delay thresholds or increasing DCN (shallow-
buffered) packet losses with higher thresholds. For example,
Vegas, when scaling its default parameters by 20, achieves
1.5× higher throughput at the cost of > 30× more intra-DC
packet losses. Furthermore, low delay thresholds impose harsh
requirements on accurate delay measurement [13], for which
extra hardware support is needed.

The above problems call for a new synergy that considers
not just one of, but both ECN and delay signals in congestion
control for cross-DC network communications. Specifically,
the new solution must be able to handle the following key
challenges (§III-A) that have not been exposed to any of
prior works: (1) How to achieve persistent low latency in the
heterogeneous environment, even if DC switches (more likely
to drop packet) and WAN routers (more likely to accumulate
large buffering) have vastly different buffer depths. (2) How
to maintain high throughput for inter-DC traffic with shallow-
buffered DC switches, even if the propagation delay is in tens
of milliseconds range, instead of < 250 μs assumed by DCN
transport protocols such as DCTCP.

Toward this end, this paper presents GEMINI to organically
integrate ECN and delay through the following three main
ideas (§III-B) to combat the above two challenges:

• Integrating ECN and Delay Signals for Congestion
Detection: Delay signal is leveraged to bound the total
in-flight traffic over the entire network path including
the WAN segment, while ECN signal is used to control
the per-hop queue inside DCN. With bounded end-to-end
latency and limited packet losses, persistent low latency
is guaranteed.

• Modulating the ECN-Triggered Window Reduction
Aggressiveness by the RTT of a Flow: Unlike conven-
tional TCPs that drain queues more for larger RTT flows,
we make large RTT flows decrease rates more gently,
resulting in smoother “sawtooth” window dynamics. This,
in turn, prevents bandwidth under-utilization of inter-DC
traffic, while sustaining low ECN threshold for intra-DC
traffic.

• Adapting to RTT Variation in Window Increase: We scale
the additive window increase step in proportion to RTT,
which better balances the convergence speed and system
stability under mixed inter-DC and intra-DC traffic.

Finally, we evaluate GEMINI by extensive testbed exper-
iments (§IV). We implement GEMINI with Linux kernel
4.9.25 and commodity switches. We show that GEMINI

achieves up to 49% higher throughput compared to DCTCP
under DCN congestion, and up to 87% lower RTT compared
to Cubic under WAN congestion; converges to bandwidth
fair-sharing point in a quick and stable manner regardless of
different RTTs; and delivers persistent low flow completion
times (FCT)—up to 53%, 31%, 76% and 2% reduction of
small flow average completion times, and up to 34%, 39%,
9% and 58% reduction of large flow average completion times
compared to TCP Cubic, DCTCP, BBR and TCP Vegas.

II. BACKGROUND AND MOTIVATION

We show heterogeneity of cross-DC networks in §II-A, and
demonstrate transport performance impairments in §II-B.

A. Heterogeneity in Cross-DCNs

The real-world cross-datacenter networks present heteroge-
neous characteristics in the following aspects:

Heterogeneous Networking Devices: A cross-DC network
consists of heterogeneous networking devices (e.g., with dis-
tinct buffer depths) from intra-DC network (DCN) and inter-
DC WAN. Table I gives a survey of switches or routers [17]
commonly used in DCN and WAN. DCN switches have
shallow buffers, up to tens of kilobytes per port per Gbps.
In contrast, WAN routers adopt deep buffers, up to tens of
megabytes per port per Gbps.

Mixed Intra-DC and Inter-DC Traffic: Intra-DC and
inter-DC traffic coexists in the cross-DC network [18], [19].
They exhibit very different RTTs. To demonstrate this, we con-
duct RTT measurements on one of the major cloud platforms
with 12 representative DCs across the globe. Figure 2 shows
the result. The intra-DC RTTs are as small as hundreds
of microseconds. In contrast, the inter-DC RTTs vary from
several milliseconds to hundreds of milliseconds.
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Fig. 2. RTT heat map in Cross-DC network.

Different Administrative Control: Cloud operators have full
control over DCN, but do not always control the WAN devices.
This is because many cloud operators lease the network
resource (e.g., guaranteed bandwidth) from Internet service
providers (ISPs) and WAN gears are maintained by the ISPs.
As a result, some switch features, e.g., ECN, may not be
well supported [20], [21] (either disabled or configured with
undesirable marking thresholds) in WAN.

The heterogeneity imposes great challenges in transport
design. Ideally, transport protocols should take congestion
location (buffer depth), traffic type (RTT) and supported
mechanism (e.g., ECN) into consideration. We show how prior
designs are impacted without considering the heterogeneity in
the following subsection (§II-B).

B. Single Signal’s Limitations With Heterogeneity

Most of the existing transport protocols [10]–[15] use either
ECN or delay as the congestion signal. While they may work
well in either DCN or WAN, we find that ECN or delay alone
cannot handle heterogeneity. We conduct extensive experi-
ments to study the performance impairments of leveraging
ECN or delay signal alone in cross-DC networks.

Testbed: We build a testbed (Figure 3) that emulates 2 DCs
connected by an inter-DC WAN link. Each DC has 1 border
router, 2 DC switches and 24 servers. All links have 1 Gbps
capacity. The intra-DC and inter-DC base RTTs (without
queueing) are ∼ 200 μs and ∼ 10 ms,1 respectively. The max-
imum per-port buffer size of DC switch and border router are
∼450 and 10,000 1.5 KB-MTU-sized packets, respectively.

Schemes Experimented Instead of enumerating every trans-
port protocol, we select several transport solutions that are
representative for their own category based on the conges-
tion signal and are readily deployable with solid Linux ker-
nel implementation. Specifically, we experiment Cubic [23],
Vegas [12], BBR [14] and DCTCP [10]. Cubic is experimented
with and without ECN. ECN threshold at DC switches is set

1Our DC border routers are emulated by servers with multiple NICs, so that
we can use NETEM [22] to emulate inter-DC propagation delay.

Fig. 3. Cross-datacenter network testbed.

to 300 packets2 to guarantee high throughput for inter-DC
traffic (as suggested by Figure 5(b)). ECN is not enabled in
the WAN segment. Vegas uses two parameters α and β to
control the lower and upper bound of excessive packets in
flight. We experiment the default setting (α = 2, β = 4) and
scaled by 10 settings (α = 20, β = 40).

We run realistic workload based on a production trace of
web search [10]. All flows cross the inter-DC WAN link.
The average utilization of the inter-DC and intra-DC links are
∼90% and ∼11.25–45%. The flow completion time (FCT)
results are shown in Figure 4. We make the following obser-
vations and claims, and elaborate them later in the section:

• Transport protocols based on loss or ECN signal only
(e.g., Cubic, Cubic + ECN and DCTCP) perform poorly
in small flow FCTs (Figure 4(a) and 4(b)). This is because
they experience high packet losses in shallow-buffered
DCN (Table II) and large queueing delay without ECN
in WAN. We further find that configuring ECN threshold
is fundamentally difficult under mixed traffic.

• Transport protocols based on delay signal, when using
small thresholds (e.g., Vegas), achieve good performance
for small flows (Figure 4(a) and 4(b)) at the cost of
slowing down large flows (Figure 4(c)). In contrast, when
using large thresholds (e.g., Vegas with the scaled by
10 parameters), they greatly degrade the performance
of small flows. We further demonstrate the dilemma on
setting delay thresholds under distinct buffer depths.

• BBR suffers from high packet loss rates (> 0.1%), lead-
ing to poor small flow FCTs (Figure 4(a) and 4(b)).
BBR requires precise estimates of available bandwidth
and RTT, which is difficult to achieve under dynamic
workload. For example, the bandwidth probing based
on a multiple-phase cycle (8 RTTs by default) may not
catch up with bursty traffic quickly enough to avoid
buffer overflow. And it does not explicitly react to loss
signal, leading to continuous losses until the mismatched
estimation expires.

Problems of ECN-Signal-Only Solutions: ECN-based trans-
port uses the ECN signal [24], [25] that often reflects the
exceeding queue length at the congested network link. For it
to deliver high throughput, switch should not mark ECN until

2We have tuned the ECN threshold for both DCTCP and Cubic. The selected
ECN marking threshold achieves the best throughput. A higher one leads to
higher loss rate and thus lower throughput. A lower one also results in lower
throughput due to frequent congestion notification.
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Fig. 4. Flow completion time (FCT) results. Small flow: Size < 100 KB. Large flow: Size > 10 MB.

Fig. 5. Conflicting ECN requirements in DCTCP. The right y-axis shows
latency by the inflated RTT ratio—the queueing-inflated RTT normalized by
the base RTT (w/o queueing).

queue length reaches the bandwidth-delay product (BDP) of
the network path3 or a constant fraction of it [10], [26], [27].
However, in a cross-DC setting, it is difficult to configure
the marking parameters due to the large difference in RTT
among different paths and divergent requirements imposed
by intra-DC and inter-DC flows. Intra-DC flows impose
small buffer pressure but have stringent latency requirement
(e.g., hundreds of microseconds). In contrast, inter-DC flows
have looser latency requirement given the large base latency
of WAN, instead require large buffer space for high WAN
utilization.

To demonstrate the problem, we generate incast flows from
hosts in the same rack to a remote server using DCTCP.
We perform two experiments in this setting. In the first
experiment, we choose a destination server in the same DC
so there are intra-DC flows only. In the second experiment,
we choose a destination server in a remote DC so there are
inter-DC flows only. In both cases, the bottleneck link is at the
source DC switch due to the incast traffic pattern. We vary the
ECN marking threshold of the bottleneck switch between 20,
40, 80, 160, and 320 packets per port.

Figure 5(a) and 5(b) show the throughput and latency
results of intra-DC and inter-DC flows, respectively. From
Figure 5(a), we observe a small threshold is desirable to
achieve low latency for intra-DC flows. In contrast, from
Figure 5(b), we observe inter-DC flows require a high thresh-
old for high throughput. Clearly, there is a conflict: one cannot
achieve high throughput and low latency simultaneously for
both inter-DC and intra-DC flows in the cross-DC network.

In fact, achieving high utilization over cross-DC is non-
trivial because intra-DC switches have shallow buffers — the
shallow buffer is easily overwhelmed by bursty large-BDP

3BDP is an attribute of a network path calculated by multiplying the
bottleneck link bandwidth and the zero-queueing round-trip delay. Thus, BDP
varies for flows of different network paths.

TABLE II

DCN/WAN PACKET LOSS RATE (10−5)

cross-DC flows (we call it buffer mismatch). We confirm that
by measuring the packet loss rate (PLR) in previous dynamic
workload experiments. Table II shows the results. We find
that packet losses happen within DCN mostly (> 80%), even
though inter-DC WAN is more heavily loaded than intra-DC
links. The high losses then lead to low throughput for loss-
sensitive protocols. Large-BDP cross-DC traffic is a key factor
of the problem. We repeat the same experiments with the
inter-DC link delay set to 0. All traffic is now with low BDPs.
We observe small PLRs (< 10×10−5) within DCN for all
ECN-based schemes this time. Further, we find that naively
pacing packets like in BBR cannot completely resolve the
problem. For example, Cubic with FQ/pacing [28] has similar
high PLR (66×10−5) in DCN compared to raw Cubic.

In addition, ECN-based transport protocols require ECN
marking support from all network switches. However, ECN
marking may not be well supported. It is either disabled
or configured with undesirable marking thresholds in WAN
(discussed in §II-A). As a result, ECN-based transport such
as DCTCP may fall back on using packet loss signal, leading
to high packet losses and long queueing delay.

Problems of delay-signal-only solutions: Delay-based trans-
ports use the delay signal [12], [13] that reflects the cumulative
end-to-end network delay. Typically, they have a threshold to
control the total amount of in-flight traffic. However, given
different buffer depths in WAN and DCN, a dilemma arises
when setting the delay threshold — either inter-DC throughput
or intra-DC latency is sacrificed.

Cross-DC flows may face congestion either in WAN or
DCN. Delay signal handles both indistinguishablly given its
end-to-end nature. On the one hand, if we assume congestion
occurs in WAN, the delay thresholds should be large enough
(usually in proportion to the BDP) to fully utilize the WAN
bandwidth. However, if the bottleneck resides in the DCN
instead, the large thresholds (e.g., 10 ms× 1 Gbps = 1.25 MB)
can easily exceed the DC switch shallow buffers (e.g., 83 KB
per Gbps) and cause frequent packet losses. On the other hand,
if we assume congestion happens in DCN, the delay thresholds
should be low enough (at least bounded by the DC switch
buffer sizes) to avoid severe intra-DC packet losses. However,
if the bottleneck resides in WAN instead, the low thresholds
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Fig. 6. Dilemma in setting delay threshold. The left y-axis shows throughput
by the flow completion time (FCT) of large flows. The right y-axis shows
packet loss rate (PLR) inside DCN.

can greatly impair the bandwidth utilization. In sum, the
dilemma of setting delay thresholds arises.

To demonstrate the problem, we run the same benchmark
workloads used earlier in the section. We experiment Vegas
with the default setting (α = 2, β = 4) and scaled by N
settings (α = 2 × N, β = 4 × N ), where N is set to 1,
5, 10, 15, 20. Results are shown in Figure 6. On the one
hand, small delay thresholds degrade the inter-DC throughput,
leading to high average FCT for large flows. On the other hand,
large delay thresholds increase packet losses significantly in
shallow-buffered DCN. Therefore, setting the delay thresholds
are faced with a dilemma of either hurting inter-DC throughput
or degrading intra-DC packet loss rate.

In addition, low delay thresholds impose harsh requirement
over accurate delay measurement, for which extra device
supports (e.g., NIC prompt ACK in [13]) are needed.

III. GEMINI

We introduce our design rationale in §III-A, describe the
detailed GEMINI congestion control algorithm in §III-B, and
provide guidelines for setting parameters in §III-C.

A. Design Rationale

How to Achieve Persistent Low Latency in the Heteroge-
neous Network Environment?: Persistent low latency implies
low end-to-end queueing delay and near zero packet loss.
Obviously, ECN, as a per-hop signal, is not a good choice
for bounding the end-to-end latency; not to mention, ECN
has limited availability in WAN. If we use delay signal alone,
small delay threshold is necessary for low loss given the DC
switch shallow buffer. However, with a small amount of in-
flight traffic, we may not be able to fill the network pipe of
the WAN segment (demonstrated in §II-B).

Instead of using a single type of signal alone, we integrate
ECN and delay signals to address this challenge. In particular,
delay signal, given its end-to-end nature, is effectively used to
bound the total in-flight traffic; and ECN signal, as a per-hop
signal, is leveraged to control the per-hop queues. Aggressive
ECN marking is performed at the DC switch to prevent
shallow buffer overflow. Thus, the constraint of using small
delay thresholds is removed, leaving more space to improve
WAN utilization. In this way, the aforementioned dilemma of
delay-based transport is naturally resolved.

How to Maintain High Throughput for Inter-DC Traffic
With Shallow-Buffered DC Switches?: A majority of trans-
port (e.g., DCTCP) follow additive-increase multiplicative-
decrease (AIMD) congestion control rule. The queue length
they drain in each window reduction is proportionate to BDP
(C × RTT ) [10], [26], [27]. Essentially, the queue length
drained each time should be smaller than the switch buffer
size to avoid buffer empty and maintain full throughput. Thus,
given large RTT range in cross-DC network, high buffers
are required. In deep-buffered WAN, setting a moderately
high delay threshold works well to balance throughput and
latency. However, in shallow-buffered DCN, aggressive ECN
marking is required for low queueing and low loss rate. With
limited buffer space, sustaining high throughput gets extremely
difficult (demonstrated in §II-B).

To address this buffer mismatch challenge, we modulate
the aggressiveness of ECN-triggered window reduction by
RTT. Maintaining high throughput, in effect, requires large
RTT flows to drain queues as small as small RTT flows do
during window reduction. Intuitively, we make larger RTT
flows reduce rates more gently, thus resulting in smoother
“sawtooth” window and queue length dynamics. In this way,
bandwidth under-utilization can be effectively mitigated, while
still using a small ECN marking threshold. The use of small
ECN threshold leave enough headroom in the shallow buffer
switches because it keeps the average buffer occupancy low,
reducing the delay and packet drop.

Further, we adjust the window increase step in proportion
to BDP. Conventional AIMD adopts fixed constant window
increase step for all flows. This either hurts convergence speed
of large-BDP inter-DC flows, or makes the system unstable
for small-BDP intra-DC flows. When BDP is large, AIMD
requires more RTTs to climb to the peak rate, leading to
slower convergence. In contrast, when BDP is small, AIMD
may frequently overshoot the bottleneck bandwidth, resulting
in more frequent losses and thus less stable performance.
Therefore, we adjust the window increase step in proportion
to BDP for better robustness under heterogeneity.

B. GEMINI Algorithm

GEMINI is a window-based congestion control algo-
rithm that uses additive-increase and multiplicative-decrease
(AIMD). Following the design rationale above, GEMINI

leverages both ECN and delay signals for congestion detection.
It further adjusts the extent of window reduction as well as
growth function based on RTTs of the flows to incorporate
heterogeneity. The GEMINI algorithm is summarized by flow-
chart in Figure 7 and pseudocode in Algorithm 1. Parameters
and variables are summarized in Table III.

Integrating ECN and Delay for Congestion Detection: The
congestion detection mechanism leverages both ECN and
delay signals. Delay signal is used to bound the total in-flight
traffic in the network pipe. ECN signal is used to control the
per-hop queues inside DCN. By integrating ECN and delay
signal, low latency can be achieved [29]. Specifically, DCN
congestion is detected by ECN, so as to meet the stringent
per-hop queueing control requirement imposed by shallow
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Fig. 7. GEMINI congestion control process.

Algorithm 1 GEMINI Congestion Control Algorithm

Input : New Incoming ACK
Output: New Congestion Window Size

/* Update transport states (e.g., α) */
1 update_transport_state(α, rtt_base, rtt_min) ;
/* When congested, set 1; else 0. */

2 congested_dcn ← ecn_indicated_congestion() ;
3 congested_wan ← rtt_indicated_congestion() ;

4 if congested_dcn || congested_wan then
5 if time since last cwnd reduction > 1 RTT then
6 F ← 4 × k/(c × rtt_base + k) ;
7 f_dcn ← α × F × congested_dcn ;
8 f_wan ← β × congested_wan ;
9 cwnd ← cwnd × (1 - max(f_dcn, f_wan)) ;

else10

11 h ← H × c × rtt_base ;
12 cwnd ← cwnd + h/cwnd ;

TABLE III

PARAMETERS AND VARIABLES USED IN GEMINI

buffers. WAN congestion is detected by delay, because the
end-to-end delay is dominated mostly in WAN than in DCN.4

4The delay signal cannot exclude the DCN queueing delay. However, DCN
queueing is often low due to DCN shallow buffer, much lower than that on
WAN. Such a low DCN queueing delay has very limited impact with a relative
large delay threshold as shown in Table V.

DCN congestion is indicated by the ECN signal — the
ECN-Echo flag set in the ACKs received by the senders. The
ECN signal is generated exactly the same as DCTCP. Data
packets are marked with Congestion Experienced (CE) code-
point when instantaneous queueing exceeds marking threshold
at the DC switches. Receivers then echo back the ECN marks
to senders through ACKs with the ECN-Echo flags. Given
shallow-buffered DCN, the ECN signal is leveraged with a
small marking threshold for low packet losses.

WAN congestion is indicated by the delay signal — ACKs
returned after data sending with persistent larger delays:
RTTmin > RTTbase +T , where RTTmin is the minimum RTT
observed in previous RTT (window); RTTbase, or simplified
as RTT, is the base RTT (minimum RTT observed during a
long time); T is the delay threshold. Inspired by [30], we use
RTTmin instead of average or maximum RTTs, which can bet-
ter detect persistent queueing and tolerate transient queueing
possibly caused by bursty traffic. Given deep-buffered WAN,
the delay signal is used with a moderately high threshold for
high throughput and bounded end-to-end latency.

When either of the two signals indicate congestion, we react
to the signal by reducing the congestion window correspond-
ingly. When both ECN and delay signals indicate congestion,
we react to the one of heavier congestion:

CWND = CWND × (1−max(f_dcn, f_wan))

where f_dcn determines the extent of window reduction for
congestion in DCN; and f_wan determines that of WAN.
We show how to compute them later in the section.

Modulating the ECN-Triggered Window Reduction Aggres-
siveness by RTT: The window reduction algorithm aims to
maintain full bandwidth utilization while reducing the network
queueing as much as possible. This essentially requires switch
buffer never underflow at the bottleneck link. Given distinct
buffer depths, GEMINI reduces congestion window differently
for congestion in DCN and WAN.

In DCN, given shallow buffer, strictly low ECN threshold is
used for low packet losses. We adopt the DCTCP algorithm,
which works well under the low ECN threshold for the
intra-DC flows. However, for large RTT inter-DC flows, the
throughput drops greatly. This is because the buffer drained
by a flow during window reduction increases with its RTT
(e.g., the amplitude of queue size oscillations for DCTCP is
O(
√

C × RTT) [10], [27]). Larger RTT flows drain queues
more and easily empty the switch buffers, leading to low
link utilization. Inspired by this, GEMINI extends DCTCP
by modulating the window reduction aggressiveness based on
RTT. This guides the design of f_dcn — the extent of window
reduction when congestion is detected in DCN. When ECN
signal indicates congestion, we compute f_dcn as follows:

f_dcn = α× F

where α is the exponential weighted moving average (EWMA)
fraction of ECN marked packets, F is the factor that modulates
the congestion reduction aggressiveness. We derive the scale
factor F = 4K

C×RTT+K (see Theorem 1), where C is the band-
width capacity (a constant parameter for given network), RTT
is the minimum RTT observed during a long time, K is the
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ECN marking threshold. Thus, for intra-DC flows, following
the guideline in DCTCP by setting K = (C×RTT)/7, we have
F = 1

2 , exactly matching the DCTCP algorithm. For inter-DC
flows with larger RTTs, F gets smaller, leading to smaller
window reduction and smoother queue length oscillation.

In WAN, given much deeper buffer, high throughput can
be more easily maintained than in DCN. In fact, window
reduction based on a fixed constant, like standard TCPs [23],
[31] do, is enough for high throughput. There are potentially
a wide range of threshold settings to effectively work with
(see §III-C). This guides the design of f_wan — the extent
of window reduction when congestion is detected in WAN.
When RTT signal indicates congestion, we compute f_wan
as follows:

f_wan = β

where β is a window decrease parameter for WAN.
The window reduction is performed no more than once per

RTT, which is the minimum time required to get feedback from
the network under the new sending rate. Despite the congestion
detection by ECN and delay, packet losses and timeouts may
still occur. For that, we keep the same fast recovery and fast
retransmission mechanism from TCP.

Window Increase That Adapts to RTT Variation: The con-
gestion avoidance algorithm adapts to RTTs (or BDP when
the bandwidth capacity is fixed) to help balance convergence
speed and stability. For conventional AIMD, large BDP flows
need more RTTs to climb to the peak rate, leading to slow
convergence; while small BDP flows may frequently overshoot
the bottleneck bandwidth, leading to unstable performance.
Therefore, adjusting the window increasing step in proportion
to BDP compensates the RTT variation, and makes the system
more robust under diverse RTTs. Further, it also mitigates
RTT unfairness [32], [33], which in turn helps to improve tail
performance. This leads to the adaptive congestion window
increase factor h. When there is no congestion indication, for
each ACK,

CWND = CWND +
h

CWND

h is a congestion avoidance factor in proportion to BDP:
h = H × C × RTT, where H is a constant parameter, C
is the bandwidth capacity, RTT is the minimum RTT observed
during a long time. We prove that factor h together with the
scale factor F guarantees bandwidth fair-sharing regardless of
different RTTs in Appendix §B.

Summary: GEMINI resolves the conflicting requirements
imposed by network heterogeneity naturally by integrating
ECN and delay signal, specifically, (1) in face of distinct buffer
depths, GEMINI handles congestion in WAN and DCN by
delay and ECN signal respectively, simultaneously meeting
the need of strictly low latency in DCN and high bandwidth
utilization in WAN; (2) in face of mixed traffic with large
range of RTTs in shallow-buffered DCN, GEMINI maintains
high throughput by modulating the window reduction aggres-
siveness based on RTTs. In particular, large RTT flows reduce
the windows more gently, effectively avoiding buffer empty
and bandwidth under-utilization. This is achieved by scale

TABLE IV

DEFAULT GEMINI PARAMETER SETTINGS

factor F , which guarantees full throughput under limited
buffer space or small ECN threshold at steady state (see
Theorem 1 with detailed proof in Appendix §A). Besides,
Gemini adapts its window increase step in proportion to the
RTT, achieving faster convergence speed and better fairness.

Theorem 1: Given a positive ECN marking threshold K ,
we can maintain 100% throughput under DCN congestion if
congestion window is reduced as follows,

CWND = CWND × (1− α× F )

where α is the EWMA of ECN fraction and F ≤ 4K
C×RTT+K .

C. Guidelines for Setting Parameters

Default GEMINI parameter settings are shown in Table IV.
We adopt the default parameter settings throughout all our
experiments unless otherwise specified. We provide the fol-
lowing rules of thumbs for setting the parameters, but leave
finding the optimal threshold settings to the future work.

ECN Marking Threshold (K): The scaling factor F ensures
full link utilization given an ECN threshold (K). As a lower K
indicates a smaller queue, setting K as low as possible may
seem desirable. However, there is actually a trade-off here.
When K is small, the scaling factor F is also small, making
the flows reduce their congestion window slowly, leading to
slower convergence. Therefore, we recommend a moderately
small threshold of 50 packets per Gbps. In addition, to mitigate
the effect of packet bursts (especially for large BDP inter-DC
traffic), we use a per-flow rate limiter at the sender to evenly
pace out each packet.

Queueing Delay Threshold (T ): T should be sufficiently
large to achieve high throughput in the cross-DC pipe.
It should also leave enough room to filter out the interference
from the DCN queueing delay. In practice (§II-A), RTTs
(include queueing) in production DCNs are at most 1ms.
We recommend to set T = 5 ms that is higher enough to
remove the potential DCN queueing interference (see Table V).

Window Decrease Parameter (β): GEMINI reduces the
window size by β multiplicatively when WAN congestion is
detected. To avoid bandwidth under-utilization, we need to
have queueing headroom T > β

1−β RTT, or β < T
T+RTT based

on the buffer sizing theory [26]. Thus, we have β < 0.33,
assuming RTT = 10ms and T = 5ms. We recommend to set
β = 0.2 (the same reduction factor as Cubic and Vegas) for
smoother ’sawtooth’. In practice, this is stricter than necessary
as competing flows are often desynchronized [26]. We show
that the recommended T and β settings can well serve the
cross-DC networks in a wide range of RTTs in §IV-B.

Window Increase Parameter (H): In congestion avoidance
phase, GEMINI grows its congestion window size by h MSS
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every RTT. In our implementation, we actually scale h with
BDP (C×RTT) instead of RTT only, that is, h = H×C×RTT.
This is reasonable as large BDP means potentially large
window size. Scaling h with BDP achieves better balance
between convergence speed and stability. We recommend to set
H = 1.2 × 10−7 with bounded minimum/maximum increase
speed of 0.1 / 5 respectively as a protection. This leads to
h = 1 when C = 1Gbps and RTT = 8ms, a middle ground
between large BDP inter-DC traffic and low BDP intra-DC
traffic.

IV. EVALUATION

In this section, we present the detailed GEMINI Linux kernel
implementation and evaluation setup in §IV-A, and conduct
extensive experiments to answer the following questions:

§IV-B Does GEMINI Achieve High Throughput and
Low Latency?: We show that GEMINI achieves higher
throughput (1−1.5×) and equally low delay compared
to DCTCP under DCN congestion; lower delay (> 7×)
and equally high throughput compared to Cubic under
WAN congestion.
§IV-C Does GEMINI Converge Quickly, Fairly and
Stably?: In static traffic experiments, we show that
GEMINI converges to the bandwidth fair-sharing point
quickly and stably under both DCN congestion and
WAN congestion, regardless of distinct RTTs differed
by up to 64 times.
§IV-D How Does GEMINI Perform Under Realistic
Workload?: In realistic traffic experiments, we show
that under both cases (intra-DC heavy or inter-DC
heavy traffic pattern), GEMINI persistently achieves the
one of the best flow completion times for both short
and large flows.

A. Implementation and Experiment Setup

GEMINI Implementation: GEMINI is developed based on
Linux kernel 4.9.25. Linux TCP stack has a universal conges-
tion control interface defined in struct tcp_congestion_ops,
which supports various pluggable congestion control modules.
The congestion window reduction algorithm is implemented in
in_ack_event() and ssthresh(). The congestion avoidance
algorithm is implemented in cong_avoid().

Testbed: Experiments are conducted in 2 testbeds with
1Gbps and 10Gbps capacity respectively. The 1Gbps testbed
has a larger scale than the 10Gbps one. Both testbeds share the
same topology as shown in Figure 3. There are 2 data centers
connected by an inter-DC WAN link. Each data center has one
border router, two DC switches and multiple servers. Border
routers are emulated by servers with multiple NICs, so that we
can use NETEM [22] to emulate WAN propagation delay. Intra-
DC (under single ToR) and inter-DC base RTTs are ∼ 200 μs
and ∼ 10 ms, respectively. Dynamic buffer allocation [34] at
the DC switches is enabled like most operators do in real
deployments to absorb bursts.

• Large-scale 1Gbps Testbed: There are 50 Dell PowerEdge
R320 servers and 4 Pica8 P-3297 switches. Pica8 P-3297
switches have 4MB buffer shared by 48 ports. The WAN

buffer is set to 10,000 1.5 KB-MTU-sized packets per
port. All network interfaces are set to 1Gbps full duplex
mode.

• Small-scale 10Gbps Testbed: There are 10 HUAWEI
RH1288 V2 servers and 1 Mellanox SN2100 switch
(divided into multiple VLANs). Mellanox SN2100
switches have 16MB buffer shared by 16 ports. The WAN
buffer is set to 80,000 1.5 KB-MTU-sized packets per
port. All network interfaces are set to 10Gbps full duplex
mode.

Remark: We show results of the large-scale testbed by default.
Schemes Compared: We experiment Cubic [23], Vegas [12],

BBR [14], DCTCP [10] and GEMINI. All these protocols have
implementations in Linux kernel TCP and are readily deploy-
able in practice. Cubic is the default loss-based congestion
control algorithm used in Linux system. It is experimented
with and without ECN. DCTCP is an ECN-based congestion
control algorithm designed to achieve high throughput, low
latency and high burst tolerance in DCN. The ECN marking
threshold is set to 300 packets to guarantee high throughput for
inter-DC traffic. Vegas uses two parameters α and β to control
the lower and upper bound of excessive packets in flight.
We experiment the default setting (α = 2, β = 4) and scaled
by 10 settings (α = 20, β = 40) to show the throughput and
latency trade-off. BBR is designed primarily for the enterprise
WAN. It tries to drive the congestion control to the theoretical
optimal point [35] with maximized throughput and minimized
latency, based on accurate bandwidth and RTT estimation.
GEMINI is the transport design proposed in this paper. Default
GEMINI parameter settings are shown in Table IV. We adopt
the default parameter settings throughout all experiments in
this paper if not specified. The ECN marking is configured
only at the DC switches.

B. Throughput and Latency

We show that GEMINI achieves high throughput and low
latency under both DCN congestion and WAN congestion.

Handling Congestion in DCN: ECN-based DCN congestion
control module needs to cope with the mismatch between
DC switch shallow buffer and high-BDP inter-DC traffic so
as to strike a good balance between latency and throughput.
We show that, by adding BDP-aware scale factor F , the
mismatch issue can be mitigated to a great extent.

To demonstrate that, we generate many-to-one long flows
sharing one DC switch bottleneck link. We perform two
experiments, with all intra-DC flows in the first one and all
inter-DC flows in the second. The RTT-based WAN congestion
control module is disabled here for GEMINI (the module will
not work even if we enable it, because the RTT threshold itself
will filter out the DCN congestion). We set the ECN marking
threshold K to 20, 40, 80, 160, 320 packets.

Results show that there is little gap between GEMINI and
DCTCP for the intra-DC flows. The average RTTs of inter-DC
flows are also similar (so the results are neglected here). The
throughputs of inter-DC flows are shown in Figure 8. GEMINI

maintains slightly higher throughput (938 mbps) than DCTCP
(899 mbps) when setting K as high as 320 packets. Setting
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Fig. 8. Aggregate throughput of inter-DC flows that bottlenecked at a DCN
link. GEMINI is less buffer-hungry (requires 0–76% smaller K) than DCTCP
when achieving similar throughput.

Fig. 9. RTT and throughput of inter-DC flows bottlenecked at a WAN link.

TABLE V

IMPACT OF RTT NOISE ON THROUGHPUT

a higher threshold is prohibitive given limited buffer left to
avoid packet losses under bursty traffic.

Handling Congestion in WAN: GEMINI leverages delay
signal for WAN congestion control. To quantify the signal
error, we measure RTTs in our testbed under a quiescent
scenario. The standard deviation of the measured intra-rack
and inter-DC RTT are 17 μs and 58 μs, respectively. To show
how noisy RTT can impact GEMINI, we add RTT estimation
errors deliberately in our GEMINI kernel module and run
many-to-one static flows sharing one bottleneck link in WAN.
The random noise is added to each RTT sample with uniform
distribution in the range of [ 0, x ] ms, where x is set to 0, 0.2,
1, 2. The results are listed in Table V. The noise from the
variable kernel processing time (< 0.1 ms) has no impact to
the GEMINI throughput. When considering the potential DCN
queueing delay interference (< 1 ms), the aggregate throughput
of GEMINI only drops slightly. This verifies that setting T =
5 ms can well filter out the interference from DCN queueing
delay. We also attribute the robustness partially to the design
that uses RTTmin in each window time to detect persistent
congestion.

Fig. 10. GEMINI converges quickly, fairly and stably.

Fig. 11. RTT-fairness. RTT1 and RTT2 are the intra-DC and inter-DC RTTs.
GEMINI achieves bandwidth fair-sharing regardless of different RTTs.

To further demonstrate the effectiveness of the congestion
control in WAN, we run many-to-one static flows sharing one
bottleneck link in WAN, with varying T and β settings. The
results are shown in Figure 9. In general, GEMINI maintains
near full throughput with average queueing-delayed RTTs of
16 ms (highest when T = 8ms and β = 0.2). Compared to the
transport protocols that leverage loss signals in WAN, GEMINI

achieves similar high throughput at the cost of much lower
latency. For example, in another experiment with same setup,
Cubic suffers from 7× higher average RTTs (∼ 100 ms).

Parameter Sensitivity: The GEMINI performance mainly
relies on two parameters, i.e., ECN marking threshold K and
queueing delay threshold T for congestion control in DCN
and WAN, respectively. We now analyze the performance of
GEMINI under various parameter settings.

Figure 8 shows the GEMINI performance with varying K
under DCN congestion. We can see that GEMINI performs
better than DCTCP in a large range of parameter settings.
In fact, the GEMINI throughput is not degraded until the
threshold K is set to as low as 100 packets. This means that
GEMINI is less buffer-hungry (requires 0-76% smaller K) than
DCTCP when achieving similar throughput, leaving enough
space to improve burst tolerance and latency of intra-DC
traffic.

Figure 9 shows the GEMINI performance with varying
T and β under WAN congestion. As expected, a lower T
leads to lower RTT latency at the cost of slightly decreased
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Fig. 12. [Large-scale 1 Gbps testbed] FCT results under traffic pattern 1: Inter-DC traffic, highly congested in WAN. Small flow: Size < 100 KB. Large
flow: Size > 10 MB. GEMINI achieves the best or second best results in most cases of Figure 12- 15 (within 11% of the second best scheme in the worst
case).

Fig. 13. [Small-scale 10 Gbps testbed] FCT results under traffic pattern 1: Inter-DC traffic, highly congested in WAN. Small flow: Size < 100 KB. Large
flow: Size > 10 MB.

throughput. Reducing β improves throughput but may hurt
convergence speed at the same time. We recommend to set
T = 5 ms and β = 0.2. T that is a bit higher than needed
in this case, leaving more room for higher RTT networks.
In practice, this is also necessary to filter out the interference
from DCN queueing delay (usually within 1 ms). We repeat
the previous experiments under higher RTTs with unchanged
parameter settings. Results show that GEMINI can still achieve
857 mbps throughput (within 10% of the highest throughput)
under 100 ms base RTT. This verifies the default settings can
work well under a wide RTT range.

C. Convergence, Stability and Fairness

To evaluate the convergence and stability of GEMINI,
we first start a group of 10 flows from one server. At
50 seconds, we start a second group of flows from another
server in the same rack. At 100 seconds, we start a third group
of flows from another rack in the same DC. All flows run
for 150 seconds and share the same destination server in a
remote DC.

Figure 10 shows the throughput dynamics (one flow is
shown for each flow group). GEMINI guarantees fair con-
vergence given its AIMD nature. In fact, GEMINI converges
quickly and stably under both DCN congestion (50–100 secs)
and WAN congestion (100–200 secs). For example, during
100–150 secs, the average Jain’s fairness index [36] of GEM-
INI is 0.996, much better than the other protocols (0.926,
0.975, 0.948 for Cubic, DCTCP and BBR, respectively).

Fairness is important for good tail performance. RTT unfair-
ness [32], [33] is the major challenge in achieving per-flow
bandwidth fair-sharing in cross-DC networks, where intra-DC
and inter-DC traffic with different RTTs coexists. We show
that, good RTT-fairness can be achieved by GEMINI with

the factor h and the scale factor F . To demonstrate that,
we generate 4 inter-DC flows and 4 intra-DC flows sharing
the same bottleneck link inside DC. The intra-DC RTT is
∼ 200 μs. With tc NETEM [22], the inter-DC RTT is set to
4×, 8×, 16×, 32×, 64× the intra-DC RTT. All ECN-enabled
protocols adopt the same ECN threshold of 300 packets for
fair comparison. The experiment result is shown in Figure 11.
While Cubic and DCTCP achieve proportional RTT-fairness
and BBR skews towards large RTT flows, GEMINI maintains
equal bandwidth fair-sharing regardless of the varying RTTs.

D. Realistic Workloads

We evaluate GEMINI under realistic workloads. The work-
loads are generated based on traffic patterns that have been
observed in a data center supporting web search [10]. Flows
arrive by the Poisson process. The source and destination is
chosen uniformly random from a configured IP pool. The
workload is heavy-tailed with about 50% small flows (size
< 100 KB) while 80% of all bytes belong to the larger 10%
of the flows of size greater than 10 MB. We run the workload
with a publicly available traffic generator that has been used
by other work [37], [38]. Similar to prior work [10], [39]–[41],
we use flow completion time (FCT) as the main performance
metric.

Traffic Pattern 1: Inter-DC Traffic, Highly Congested in
WAN: In this experiment, all flows cross the WAN segment.
The average utilization of the inter-DC WAN link is ∼90%.
The DC border routers are highly congested, while intra-DC
links have much lower utilization (∼11.25–45%).

The experiment results are shown in Figure 12 and 13:
(1) For small flow FCT, GEMINI performs better than Cubic,
DCTCP and BBR on both average and 99th tail. This is
because Cubic and DCTCP suffer from the large queueing
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Fig. 14. [Large-scale 1 Gbps testbed] FCT results under traffic pattern 2: mixed inter-DC and intra-DC traffic, highly congested both in WAN and DCN.
Small flow: Size < 100 KB. Large flow: Size > 10 MB.

Fig. 15. [Small-scale 10 Gbps testbed] FCT results under traffic pattern 2: mixed inter-DC and intra-DC traffic, highly congested both in WAN and DCN.
Small flow: Size < 100 KB. Large flow: Size > 10 MB.

delay in WAN segment while GEMINI well handles that with
RTT signal. BBR suffers a lot from loss as the misestimates of
bandwidth and RTT are magnified by high congestion. BBR
does not react to loss events explicitly until loss rate > 20%
(as a protection). This design choice benefits the long-term
throughput while hurts short-term latency. (2) For large flow
FCT, GEMINI performs much better than Vegas. The default
parameter setting for Vegas is very conservative (α = 2, β =
4), leading to poor throughput of large flows. Setting larger
thresholds in Vegas-10 (α = 20, β = 40) improves throughput
but hurts latency of small flows. (3) For overall FCT, GEMINI

performs the best among all experimented transport protocols.
Traffic Pattern 2: Mixed Traffic, Highly Congested Both

in WAN and DCN: In this experiment, the source and the
destination of each flow is chosen uniformly random among all
servers. Intra-DC and inter-DC traffic coexists in the network.
The average utilization of the inter-DC WAN link is ∼90%.
The average utilization of the link from the DC switch to the
border router is ∼67.5%. Therefore, both WAN and DCN are
highly congested.

The experiment results are shown in Figure 14 and 15:
(1) For small flow FCT, GEMINI performs one of the best
among experimented transport protocols. In fact, GEMINI

has consistently low packet loss rates (< 10×10−5) under
both traffic patterns. This is because Gemini handles DCN
congestion adaptively with different RTTs, thus allowing a low
ECN threshold with larger buffer headroom to absorb burst.
Besides, it also enforces pacing to reduce burst losses. (2)
For large flow FCT, GEMINI performs better than Cubic and
Vegas. Vegas does not perform well because it cannot control
congestion in WAN and DCN simultaneously. GEMINI can
identify and react to congestion in DCN and WAN differently
using ECN and RTT signals respectively. (3) For overall FCT,
GEMINI performs one of the best among all experimented
transport protocols.

V. DISCUSSION

A. Practical Considerations

TCP Friendliness: GEMINI is not TCP-friendly. For exam-
ple, like all ECN-based protocols, GEMINI has fairness
issues if it coexists with non-ECN protocols. In fact, recent
work [15], [42] shows that it is fundamentally difficult to
achieve high performance while attaining perfect friendliness
to buffer-filling protocols. Thus, they sacrifice performance
to guarantee friendliness when detecting the buffer-fillers.
GEMINI can adopt similar approaches (e.g., switching to
TCP-competitive mode when buffer-fillers are detected).
We believe advance switch support like ideal fair queue-
ing [43] would be a better solution. We do not focus on the
problem in this paper.

Real-world Deployment: For private clouds, deploying
GEMINI requires the cloud owners to add the new congestion
control kernel module at the end-hosts and configure ECN
at the DC switches. In terms of partial deployment, GEMINI

can work with common TCP remote ends since it relies
on exactly the same ACK mechanism as TCP Cubic. For
public clouds, cloud users and cloud operators are of different
entities. On one hand, cloud users control the VMs and thus
can deploy GEMINI with minimal support (ECN only) from
cloud operators. On the other hand, cloud operators control
the hypervisors at the end-hosts and the underlying network
devices. GEMINI can be enforced similarly like [44], [45].

B. Alternative Solutions

Multiple Queues + Different Protocols: A seemingly
straightforward solution under cross-DC network is to use
different transport protocols for intra-DC and inter-DC traffic,
like what major infrastructure owners, e.g., Google [14], [19]
and Microsoft [10], [46] do for their first-party applications.
However, a few issues make this approach less attractive:
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(1) classifying inter-DC and intra-DC flows based on IPs is
nontrivial. In cloud network, virtual subnets extend across
DCs for the ease of management, decoupling the IPs from
the DC locations. Maintaining an always-up-to-date IP-to-DC
mapping globally is daunting and gives away the manage-
ment benefit of running virtual subnets; (2) different transport
protocols are unlikely to fair-share the network bandwidth,
thus requiring the switches to allocate different queues for
them. General cloud users usually do not have this luxury;
(3) even if we pay the cost to adopt such a solution, some
desired performance goals are still missed: (a) The inter-DC
traffic may encounter congestion on either WAN or DCN. The
existing protocols do not address both at the same time. The
inter-DC traffic that tends to use wide-area transport will suffer
from low throughput and high loss rate when experiencing
congestion at the shallow-buffered DC switch; (b) Flow-level
bandwidth fair-sharing cannot be guaranteed by coarse-grained
traffic isolation. Static bandwidth allocation may even lead to
bandwidth under-utilization.

TCP Proxy: Another possible solution is to terminate and
relay the TCP flows with proxies at the border of each network,
or the so-called Split TCP [47]–[49]. In this way, traffic can
be transported using the best-suited protocol for each network.
The TCP proxy way has flaws in practice:

• Proxies in the middle add extra latencies. The latency
overhead can greatly impair network performance, espe-
cially for short flows that can finish in one RTT.

• Relaying every inter-DC flow is impractical. As a rule of
thumb, Google [19] allocates 10% of aggregate intra-DC
bandwidth for external connectivity, requiring prohibitive
amount of relay bandwidth for peak WAN usage.

• Configuring and managing proxy chains is complex and
error-prone. Single fault from one of the intermediate
relays may tear down the whole communication.

VI. RELATED WORK

To facilitate cross-DC network communication, there are
three lines of work in general, each operating on a differ-
ent granularity. First, WAN traffic engineering [3], [4], [50]
works on the datacenter level. It distributes network traffic
to multiple site-to-site paths (usually hundreds of updates per
day). Second, bandwidth allocation [51] applies to the tenant
or flow group level. It re-allocates the site-to-site bandwidths
and split them among all competing flow groups. Third,
transport protocol regulates the per-flow sending rate in real-
time. We focus on the transport design in this paper.

To the best of our knowledge, transport design under
heterogeneous cross-DC network is unexplored in literature.
However, there are vast transport protocols under wide area
network and datacenter network that are highly related:

Wide Area Network Transport: Cubic [23] is the default
TCP congestion control in the Linux system. It achieves high
scalability and proportional RTT-fairness by growing window
with a cubic function of time. Vegas [12] is the seminal
transport protocol that uses delay signal to avoid intrinsic high
loss and queueing delay of loss-based transport. After that,
many WAN protocols [14], [15], [52] are proposed to use

delay signal. For example, BBR [14] is proposed primarily
for the enterprise WAN. The core idea is to work at the
theoretically optimal point [35] with the aid of sophisticated
network sensing (e.g., precise bandwidth and RTT estimation).
These transport protocols consider WAN only and usually
suffer a lot from the intra-DC congestion in cross-DC network.

Datacenter Network Transport: DCTCP [10] detects the
network congestion with ECN and react in proportion to the
measured extent of congestion. Following that, many ECN-
based protocols [11], [53]–[55] are proposed for DCN conges-
tion control. The other line of work leverages delay signal with
microsecond-level accuracy for congestion feedback, which is
enabled by recent advances [13], [56], [57] in NIC technology.
For example, TIMELY [13] and RoGUE [58] use RTT signal
for congestion control in RDMA communication. We show
that ECN or delay signal alone is insufficient for cross-DC
congestion control.

Explicit rate control [59]–[63] allocates network resources
with in-network assistance. Centralized rate control [64], [65]
regulates traffic rate with a centralized controller. Multi-path
transport [66]–[69] creates subflows along multiple paths to
achieve high aggregate throughput and traffic load balance.
Proactive congestion control [70]–[75] leverages receiver-side
credits to trigger new traffic sending. Learning-based conges-
tion control [76]–[78] learns the congestion control strategy
by machine either online or offline. These novel transport
protocols often have less comprehensive and unpredictable
performance, and may require advanced network support
(e.g., cutting payload [79]) that are unavailable or bad sup-
ported in cross-DC network facilities.

VII. CONCLUSION

As geo-distributed applications become prevalent, cross-DC
communication gets increasingly important. We investigate
existing transport and find that they leverage either ECN or
delay signal alone, which cannot accommodate the hetero-
geneity of cross-DC networks. Motivated by this, we design
GEMINI, a solution for cross-DC congestion control that
integrates both ECN and delay signal. GEMINI uses the
delay signal to bound the total in-flight traffic end-to-end,
while ECN is used to control the per-hop queues inside a
DCN. It further modulates ECN-triggered window reduction
aggressiveness with RTT to achieve high throughput under
limited buffer. We implement GEMINI with Linux kernel and
commodity switches. Experiments show that GEMINI achieves
low latency, high throughput, fair and stable convergence, and
delivers lower FCTs compared to various transport protocols
(e.g., Cubic, Vegas, DCTCP and BBR) in cross-DC networks.

APPENDIX

A. Derivation of the Scale Factor F

We analyze the steady state behavior and prove that GEMINI

achieves full throughput with scale factor F = 4K
C×RTT+K .

Theorem 1: Given a positive ECN marking threshold K ,
we can maintain 100% throughput under DCN congestion if
congestion window is reduced as follows,

CWND = CWND × (1− α× F )
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Fig. 16. AIMD Sawtooth illustration.

where α is the EWMA of ECN fraction and
F ≤ 4K

C×RTT+K .
Proof: Same as prior work [10], [15], we consider N long-

lived flows with identical round-trip times RTT , sharing a
single bottleneck link of capacity C. Assuming N window
sizes are synchronized for the ease of analysis, the queue size
is:

Q(t) = N ×W (t)−C × RTT (1)

where W (t) is the dynamic window size. Therefore, the queue
size process is also a sawtooth. To achieve full link utilization,
we need to guarantee: Qmin ≥ 0 (see Figure 16).

The queue size exceeds the marking threshold K for exactly
one RTT in each cycle before the sources receive ECN
feedback and reduce their window sizes accordingly. We can
compute the fraction of marked packets, α, by simply dividing
the number of packets sent during the last RTT of the cycle
by the total number of packets sent during a full cycle of the
sawtooth.

Let’s consider one of the senders. Let S(W1, W2) denote the
number of packets sent by the sender, while its window size
increases from W1 to W2 > W1. Since this takes (W2−W1)/h
round trip times, during which the average window size is
(W1 + W2)/2,

S(W1, W2) = (W 2
2 −W 2

1 )/2h (2)

Let W ∗ = (C ×RTT +K)/N . This is the critical window
size at which the queue size reaches K, and the switch starts
marking packets with the Congestion Experienced (CE) code-
point. During the RTT before the sender reacts, the window
size peaks at W ∗ + h. Hence,

α = S(W ∗, W ∗ + h)/S((W ∗ + h)(1 − αF ), W ∗ + h) (3)

Plugging (2) into (3) and rearranging, we get:

α2F (2 − αF ) = (2W ∗ + h)h/(W ∗ + h)2 ≈ 2h/W ∗ (4)

where the approximation is valid when W ∗ � h.
Equation (4) can be used to compute α as a function of the

network parameters C, RTT , N and K . Assuming αF/2 is
small, this can be simplified as:

α ≈
√

h/FW ∗ (5)

We can now compute A in Figure 16 as follows. Note that
the amplitude of oscillation in window size of a single flow, D,
is given by:

D = (W ∗ + h)− (W ∗ + h)(1− αF ) = (W ∗ + h)αF (6)

Since there are N flows in total,

A = N ×D = N(W ∗ + h)αF ≈ N
√

hFW ∗

=
√

NhF (C × RTT + K) (7)

With (1), we have:

Qmax = N × (W ∗ + h)−C × RTT = K + Nh (8)

With (7) and (8), the minimum queue length is:

Qmin = Qmax−A = K + Nh−
√

NhF (C × RTT + K)
(9)

Finally, to find the relationship between the scale factor F
and the ECN marking threshold K , we minimize (9) over N ,
and choose K and F so that this minimum is no smaller than
zero (i.e., the queue never underflows). This results in:

F ≤ 4K

C × RTT + K
(10)

As we can see, given a fixed ECN marking threshold K ,
the larger RTT a flow has, the smaller F it gets. Therefore,
the flows with larger RTTs adjust window more smoothly to
achieve high throughput.

Note that the theoretical analysis here is a generalized form
of that in the DCTCP paper [10] and the result is consistent
with it. Specifically, when following the DCTCP algorithm by
setting a constant parameter F = 1

2 , we have K ≥ (C ×
RTT)/7, exactly matching the original DCTCP guideline.

B. Proof of RTT-Fairness

We show GEMINI achieves fair-share of the bottleneck
bandwidth in DCN where inter-DC and intra-DC flows coexist.

Theorem 2: GEMINI achieves ideal RTT-fairness with fol-
lowing AIMD rule:

Decrease: When congestion indicated by ECN per
RTT,

CWND = CWND × (1− α× F )

where α is the ECN fraction and F = 4K
C×RTT+K .

Increase: When there is no congestion indication per
ACK,

CWND = CWND +
h

CWND

where h is an adaptive congestion avoidance function
in proportion to BDP: h ∝ RTT.

Proof: From previous subsection, we know that the aver-
age window size is:

W =
W ∗ + h + (W ∗ + h)× (1− αF )

2
(11)

Therefore, when two flows competing for one bottleneck
link reach the steady state:

W1

W2

=
(W ∗

1 + h1)× (1− α1F1
2 )

(W ∗
2 + h2)× (1− α2F2

2 )
≈ W ∗

1

W ∗
2

(12)

when assuming that 1� αF
2 and W ∗ � h.
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When two flows F1 and F2 with different RTTs (assuming
RTT1 < RTT2) are competing on one bottleneck link, Equa-
tion 5 is still valid for the small RTT flow F1, in other form:

W ∗
1 = 2h1/(F1α

2
1) (13)

However, Equation 13 does not hold for large RTT flow F2.
When small RTT flow F1 reduces its CWND as soon as it gets
the ECN feedback after RTT1, the bottleneck queue length
drops immediately and packets of large RTT flow F2 will stop
being marked with ECN. So flow F2 will get only around
S(W ∗

2 , W ∗
2 + h2)RTT1

RTT2
packets marked with ECN. Following

same approach from Equation 3 to 13, for F2,

W ∗
2 = 2h2/(F2α

2
2)×

RTT1

RTT2
(14)

Packets traversing the same link have the same probability
to be ECN marked. Thus, we get:

α1 = α2 (15)

Plugging Equation 10, 13, 14, 15 into Equation 12, we have:

W1

W2

=
F2

F1
=

C × RTT1 + K

C × RTT2 + K
(16)

When assuming the average queue length is around K.
We have the average RTT:

RTT ≈ RTT +
K

C
(17)

Therefore, we have the bandwidth sharing ratio:

R1

R2

=
W1

RTT1

/
W2

RTT2

≈ 1 (18)

where Ri denotes the sending rate of flow i.
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