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Abstract—This paper presents our effort towards comprehen-
sive traffic forecasting for big data applications using external,
light-weighted file system monitoring. Our idea is motivated
by the key observations that rich traffic demand information
already exists in the log and meta-data files of many big data
applications, and that such information can be readily extracted
through run-time file system monitoring. As the first step, we use
Hadoop' as a concrete example to explore our methodology and
develop a system called HadoopWatch to predict traffic demand
of Hadoop applications. We further implement HadoopWatch
in our real small-scale testbed with 10 physical servers and 30
virtual machines. Our experiments over a series of MapReduce
applications demonstrate that HadoopWatch can forecast the
traffic demand with almost 100% accuracy and time advance.
Furthermore, it makes no modification of the Hadoop framework,
and introduces little overhead to the application performance.

I. INTRODUCTION

The explosion of big data applications has imposed sig-
nificant challenges on the design of network infrastructure
in cloud and data center environments. Researchers have
proposed various new network architectures [2, 18, 28] and
traffic engineering mechanisms [3, 5, 32] to handle the rapid
growth of bandwidth requirement in data center networks.
Many of these proposals leverage the knowledge of application
traffic demands to customize network design. For example,
Hedera [3], MicroTE [5] and D3 [32] perform flow-level
traffic engineering and rate control based on predicted traffic
demands. Helios [12], c-Through [28] and OSA [6] rely
on accurate traffic demand estimation to perform dynamic
optical circuit provisioning. More recently, researchers have
also looked into the tight integration of applications and
network to configure the network topology and routing based
on application run-time traffic demands [14, 29, 31]. All these
systems require comprehensive understanding of application
traffic in data center networks — the ability to forecast traffic
demand before packets enter the network.

However, it is difficult to predict application traffic de-
mand accurately. All the existing solutions focus on using
heuristic algorithms based on the measurement of network
level parameters. For example, Hedera [3] and Helios [12]
estimate traffic demands using flow counter measurement on
switches; c-Through [28] and Mahout [8] use socket buffer
occupancy at end hosts to estimate traffic demands for different
destinations. However, these schemes fall short. First, most
of them cannot predict the traffic demand before the traffic

0ne of the most popular and widely-used open-source software framework
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enters the network; Second, parameters observed on network
paths cannot accurately reflect the truth of application demands
due to the noise of background flows and congestion control
at end hosts; Third, they fail to capture the fine-grained
traffic dependencies and priorities information imposed by
applications. As a result, these network layer solutions are
shown to perform poorly in predicting the real application
demands [4], which further leads to undesired performance
in network provisioning and traffic engineering mechanisms
using these demands.

In this paper, we explore an alternative solution to provide
comprehensive traffic forecasting at application layer. With
application specific information, application layer traffic fore-
casting is expected to achieve more accurate traffic demand
estimation. However, there are several design issues that make
this approach challenging and interesting for exploration.

o Ahead-of-time: The scheme must be able to predict
traffic demand before the data is sent to the network,
so that it can be most useful for network configuration
and traffic engineering.

o Transparency: Many big data applications in data cen-
ters are complex distributed applications. Traffic forecast-
ing should be transparent to these applications and do not
modify any application codes.
Light-weighted: Traffic forecasting should be light-
weighted. Many data center applications are large scale
systems with high performance requirements. The traffic
forecasting system should not introduce much overhead
to degrade the application performance; and it should
scale gracefully with the number of computing nodes and
concurrent jobs.
Fine-grained: An application layer traffic forecaster is
expected to provide more fine-grained traffic demand
information than just traffic volume. For example, many
distributed applications have computation barriers that
cause dependencies among multiple flows, and flows with
more dependencies need high priorities in transfer. Such
structural information will be useful to enable better
network control and optimization.

We observe that rich traffic demand information exists in
the log and meta-data files of many big data applications, and
such information can be extracted efficiently through run-time
file system monitoring. We use Hadoop as a concrete example
to explore the design of application layer traffic forecasting
using file system monitoring. We develop a system called



HadoopWatch, which is a passive monitoring agent attached
to the Hadoop framework that monitors the meta-data and logs
of Hadoop jobs to forecast application traffic before the data
is sent. It does not require any modification to the Hadoop
framework.

We have implemented HadoopWatch and deployed it on
a real small-scale testbed with 10 physical machines and 30
virtual machines. Our experiments over a series of MapReduce
applications demonstrate that HadoopWatch can forecast the
application layer traffic demand with almost 100% accuracy
and time advance, while introducing little overhead to the
application performance.

Our work is a first step towards comprehensive traffic
forecasting at the application layer. Many research problems
remain to be explored in future work. However, we believe
our work shows early promises of performing comprehen-
sive and light-weighted traffic forecasting through file system
monitoring, which could be a useful building block for tight
network and application integration in cloud and data center
environments.

Roadmap: The rest of the paper is organized as follows.
Section §II introduces the background and key observations
that enables the forecasting architecture. Section § III presents
the design of HadoopWatch. Section § IV discusses the imple-
mentation and evaluation results of HadoopWatch. Section § V
reviews the related works. We discuss the future work and
conclude the paper in Section § VL.

II. TRAFFIC FORECASTING VIA FILE SYSTEM
MONITORING

Due to a variety of data exchange requirements, there is a
large amount of network traffic in the life cycle of a Hadoop
job. We first briefly introduce the Hadoop architecture and
its dataflow in different stages. Then, to motivate our key
idea of forecasting application traffic through external, light-
weight file system monitoring, we introduce the observations
and opportunities in file systems that provide rich-semantics
enabling traffic forecasting.

A. Hadoop Background

Hadoop consists of Hadoop MapReduce and Hadoop Dis-
tributed File System (HDFS). Hadoop MapReduce is an im-
plementation of MapReduce designed for large clusters, while
HDES is a distributed file system designed for batch-oriented
workloads. Each job in MapReduce has two phases. First,
users specify a map function that processes the input data
to generate a list of intermediate key-value pairs. Second, a
user-defined reduce function is called to merge all intermediate
values associated with the same intermediate key [11]. HDFS
is used to store both the input to the map and the output of
the reduce, but the intermediate results, such as the output of
the map, are stored in each node’s local file system.

A Hadoop implementation contains a single master node
and many worker nodes. The master node, called the Job-
Tracker, handles job requests from user clients, divide these
jobs into multiple tasks, and assign each task to a worker

node for execution. Each worker node maintains a TaskTracker
process that executes the tasks assigned to itself. Typically, a
TaskTracker has a fixed number of slots for accepting tasks.

B. Hadoop Dataflows

Many Hadoop jobs are communication intensive, involving
a large amount of data transfer during their execution. We
broadly characterize Hadoop dataflows into three types.

o Import: The map reads data from HDFS. To increase
overall data loading throughput of a job, multiple con-
current map tasks may be scheduled to fetch data in
parallel. Specifically, for each map task, the JobTracker
will specify its input split. As a map task runs, it will
fetch the corresponding data (in the form of key-value
pairs) from HDFS and iteratively perform the user defined
map function over it. Optimized with various scheduling
techniques [30, 33], most map tasks achieve data locality,
while there also exist some non-local map tasks reading
their input splits from remote DataNodes which involve
network transfer.

o Shuffle: Intermediate results are shuffled from the map
to the reduce. Before the reduce function is called, a
reduce task requires intermediate results from multiple
map tasks as its input. When a map task finishes, it will
write its output to local disk, commit to the JobTracker,
and reclaim the resources. Meanwhile, the reduce task
will periodically query the JobTracker for any latest map
completion events. Being aware of these finished map
tasks and their output locations, a reduce task initiates
a few threads and randomly requests intermediate data
from the TaskTracker daemons on these nodes.

o Export: The reduce writes output to HDFS. Large output
data is partitioned into multiple fix-sized blocks?, while
each of them is replicated to three DataNodes in a
pipeline [24, 27]. A Hadoop job completes after the
outputs of all reduce tasks are successfully stored.

C. Observations and Opportunities

Rich traffic information in file systems: Most cloud big
data applications, such as Hadoop, have various file system
activities during the job execution. We observe that these file
system activities usually contain rich information about the
job run-time status and its upcoming network traffic.

First, logging is a common facility in big data applications
for troubleshooting and debugging purposes. However, these
log file entries can also be used to identify network traffic.
For example, the source and destination of a shuffle flow in
MapReduce can be determined after locating a pair of map and
reduce tasks, while such task scheduling results are written in
the JobTracker’s log.

Besides, intermediate computing results and meta-data are
periodically spilled to disk due to limited capacity of memory
allocation. The size of all the output partitions of a map task is

2The last block in a file may be smaller.



Event Description

IN_CREATE File was created.
IN_ACCESS File was read from.
IN_MODIFY File was written to.
IN_ATTRIB File’s attribute was changed.

IN_CLOSE_WRITE
IN_CLOSE_NOWRITE
IN_OPEN
IN_MOVED_FROM
IN_MOVED_TO
IN_DELETE
IN_DELETE_SELF

File was closed (opened for writing).
File was closed (opened not for writing).
File was opened.

File was moved away from watch.

File was moved to watch.

File was deleted.

The watch itself was deleted.

TABLE I
VALID EVENTS IN inotify

saved in a temporary index file, from which we can compute
the payload volume of all the shuffle flows from this map.

In addition, the namespace of a distributed file system may
also be accessible by parsing its meta-data files on disk. For
example, when the HDFS starts up, its whole namespace
is updated in a file named Fslmage. Another file called
EditLog is used to record all namespace changes thereafter.
Although Hadoop only maintains a snapshot of the namespace
in memory for frequent remote queries, it can be externally
reconstructed with those two files on disks. The reconstructed
namespace can be used to recover the network traffic generated
by HDFS read and write operations.

Light-weighted file system monitoring. We also observe
that these file system activities can be monitored using light-
weighted file monitoring facility in modern operating systems.
In recent Linux system, there is a file change notification
subsystem called inotify [21]. The key of inotify is to perform
file surveillance in the form of watch, with a pathname and
an event mask specifying the monitored file and the types of
file change events. A file will be monitored after it is tagged
to watch, while all the files in a directory will be monitored if
the directory is watched. Table I shows all the valid events in
inotify. With inotify, we can dynamically retrieve the footprint
of an application with its file system activities. Inotify can
monitor file change events efficiently in an asynchronous
manner to avoid polling. By doing that, the application’s file
system operations can be executed in a non-blocking mode
when inotify is running.

In summary, the above two key observations enable us
explore the idea of forecasting application traffic through
external, light-weight file system monitoring.

III. HADOOPWATCH

As the first step, we use Hadoop as a concrete example to
explore the detailed design of our traffic forecasting approach.
We choose Hadoop because it is one of the most popular big
data applications running in today’s cloud and data centers,
and its execution structure represents several typical traffic
patterns in data center applications. We develop a system
called HadoopWatch and show how we can forecast traffic
demand of Hadoop jobs by only monitoring the file system
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Fig. 1. Architecture of traffic forecasting

activities. In the following, we first introduce the Hadoop-
Watch architecture, then illustrate the monitor file selection,
and finally show how to perform traffic forecasting.

A. Architecture

Based on the above observations, we propose to forecast
the traffic demand of big data applications by monitoring
their file system activities. Figure 1 shows the architecture
of this traffic forecasting framework. This framework is a
passive monitoring engine attached to a big data cluster,
which does not require any modification to the applications.
It continuously monitors the file system activities underneath
big data applications and predict their traffic demands at job
run-time. The traffic forecasting framework has two compo-
nents, Forecast Agents and Forecast Controller. We implant a
Forecast Agent in each worker/master node to collect traffic
information and report to the centralized Forecast Controller.

« Forecast Agent: Forecast Agent is a daemon implanted
on each node that collecting run-time file system activ-
ities. To keep it light-weighted, we selectively monitor
the specific files and principal activities with inotify. To
monitor file accessing details, some system call param-
eters are also collected and encoded in the redundant
space of inotify interface. To get the content of other
bulk data and metadata on disk, the agent will read them
directly. Information collected by Forecast Agent will be
continuously reported to the Forecast Controller.

o Forecast Controller: The main function of the Forecast
Controller is to collect reports from all the Forecast
Agents and generate comprehensive traffic demand re-
sults. The reported traffic demand information may in-
clude the basic information such as source, destination
and volume and more fine-grained information such as
flow dependencies and priorities.

Note that this centralized model is also inspired by the suc-
cess of several recent large-scale infrastructure deployments
such as GFS [17] and MapReduce [11] which employ a central
master to manage tasks at the scale of tens of thousands of
worker nodes.

B. Monitor File Selection

In Table II, we summarize all the files that should be
monitored to forecast the three types of dataflows in Hadoop.



Application | Flow type Required information Monitoring files & events Response action
location of a complete map task, | _ . e . .
size of each map output partition file.out.index IN_CLOSE_WRITE | parse the sequence file format, collect partLengths of all partitions
Shuffle location of a new reduce task JobTracker’s log IN_MODIFY scan next entry for the TaskTracker that launches a reduce task
when a flow starts file.out IN_SEEK 3 determine which reduce task are fetching the intermediate data
when a flow terminates TaskTracker’s log | IN_MODIFY scan next entry indicating success of the shuffle flow
block allocation results NameNode’s log | IN_MODIFY scan next entry for a new block allocation result
Had. where a pipeline establishes and R .
adoop Export . starts DataNode’s logs IN_MODIFY scan next entry for remote HDFS writing request
Xpor when a flow starts
when a flow terminates DataNode’s log IN_MODIFY scan next entry indicating success of the HDFS writing flow
locality of a map task JobTracker’s log IN_MODIFY scan next entry for locality of a map task
I " input split (blocks) and flow size split.dta IN_CLOSE_WRITE | parse splittHDFS path/start/offset), query for corresponding blocks
mpor
when a flow starts block file IN_SEEK match the probable map task fetching the data block
when a flow terminates DataNode’s log IN_MODIFY scan next entry indicating success of the HDFS reading flow
TABLE I
THE FILES FOR TRAFFIC FORECASTING IN HADOOPWATCH
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Note that the selection of these files is based on the detailed
analysis and observation of the Hadoop framework and job
execution semantics as follows.

Import: The map needs to read input from HDFS. From
the JobTracker’s log, we can easily identify whether a map
task is data-local, rack-local or non-local. For rack-local and
non-local maps, they introduce data import from remote nodes
through networks. However, the JobTracker’s log does not tell
from which DataNodes a map will read its input data split. To
forecast this information, we pick out the split.dta file. This
file contains a map task’s input split information, i.e., the input
file location, offset and length in HDFS.

Shuffle: To forecast the shuffle traffic from the map to the
reduce, we observe that the output of a map task is stored in
a file named file.out as shown in Figure 2. To support direct
access to all data partitions in it, there is an index file named
file.out.index that maintains all their offsets and sizes. Since
each partition in file.out corresponds to the payload of a shuffle
flow sent to a reduce, we can forecast its volume based on the
size of the corresponding partition. On the other hand, to infer
the source and the destination of a shuffle flow, we use the
scheduling result in the JobTracker’s log which includes the
information where a map task or a reduce task is launched.

Export: The reduce may export its output to HDFS, which
entails HDFS writing. In HDFS, each data block is replicated
with multiple replicas (3 replicas by default). The HDFS writ-
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Log files and information:

1. { blockIiD, DN1, DN2, DN3, HDFS filename and offset };

2. { blockID, client, DN1}; 3. { blockID, DN1, DN2 }; 4. { blockID, DN2, DN3};
5. { blockID, size }; 6. { blocklID, size }; 7. { blockID, size }

Fig. 3. Pipelined HDFS writing

ing is implemented using a pipeline set up among replica nodes
to maintain data consistency. Figure 3 shows the diagram of a
pipelined HDFS writing. First, when a HDFS client requests to
write a block, the NameNode allocates 3 sequential DataNodes
and writes this allocation in its log (1). Then, before the block
is transferred between each pair of DataNodes, the receiver
side writes a log indicating the upcoming HDFS writing (2-
4). Finally, when the write completes, its volume is saved in
the DataNode’s log (5-7). Through these log files, we can
forecast the communication matrix according to the pipeline
and predict the volume of upcoming flows based on the HDFS
block size (e.g., 64MB).

C. Traffic Forecasting

As above, HadoopWatch can provide accurate traffic fore-
casting for every data flow, including its source, destination
and volume. As shown in Table III, the source and destination
are two identities, which can uniquely identify a flow in a

3This event type is not implemented in primitive inotify.



‘ Dataflow ‘ Source Destination Volume

Import maplD, input blockID | mapID blockID’s size
Shuffle mapID reducelD partition size
Export reducelD reducelD, output blockID | blockID’s size

TABLE III
PER FLOW METRICS

Hadoop job. With these per flow metrics, we can not only
compose the overall traffic matrix in the cluster, but also
identify fine-grained flow relations such as dependency and
priority.

The source and destination in Table III are logical identities.
To determine the physical locations, we just map the logical
source and destination to the physical nodes. The mapping
requires knowledge of task scheduling results and block lo-
cations. Most of these information is plainly accessible by
monitoring files listed in Table II. However, the source loca-
tions of map input blocks and the volumes of reduce export
flows cannot be explicitly captured. Therefore, HadoopWatch
develops the following two heuristics to get these information.

o Source location of a map input block: When the
JobTracker schedules a rack-local or non-local map task,
it will independently choose the closest block replica to
fetch. For these map tasks, we can translate their input
splits to blockIDs through querying the NameNode. Since
there are rarely two tasks processing a same input dataset
simultaneously, the node where we captured such block
file access event probability is the chosen source of the
data import flow.

o Volume of a data export flow: When the reduce task
output is written into HDFS, the data will be divided
and stored into multiple blocks (typically 64MB) and
replicated to several DataNodes. Because the block size
is fixed, in most cases, the size of an export flow is fixed,
i.e., 64MB. However, the last block size is uncertain.
Considering that the output size of a fixed user-defined
reduce function is approximately proportional to its input
size, we maintain a selectivity, s(r), for reduce tasks in
a job, which is defined as the output size to its input
size. For an upcoming reduce operation, we estimate
its selectivity based on the selectivities of the reduce
operations in recent past using exponentially weighted
moving average (EWMA).

Snew (I') = aSmeasured(r) + (l-Oé) Sold(r)
where, « is the smoothing factor (HadoopWatch uses o =
0.25). On the other hand, a reduce task 7’s input size,
I(r), is the sum of shuffle flow volumes from all map
tasks. We get the estimated reduce output using:

O(r) = I(r) x s(r)
For the ith export flow of the reduce task r, its volume

vol(i) is calculated by checking whether the maximum
block size is enough to save the remaining bytes:

Fig. 4. Flow patterns in Hadoop

Algorithm 1 Traffic matrix calculation
Input: every f: (src, dest, vol)
1: for each f do
2:  ipl = location(f’s src)
3:  ip2 = location(f’s dest)
4. TM(pl, ip2) < TM(ipl, ip2) + f’s vol
5. end for

BLK ez, if O(r) >ix BLK s

vol(i) = { O(r) — (i = 1) BLK 4, oOtherwise

Here, BLK ., stands for the maximum size of a HDFS
block (e.g., 64MB).

With the above basic data flow information inferred, we
next can compose the traffic matrix and identify the flow
dependency and priority. While easy to achieve, we anticipate
that these information is very useful for a variety of data
center network technologies to achieve a fine-grained traffic
engineering, network profiling, to transport protocol design.
For example, traffic distribution information is critical for fine-
grained flow scheduling in Hedera [3] and traffic engineering
in MicroTE [5], while dependency and priority information
can be incorporated into several recent deadline-aware trans-
port designs like D>TCP [26] and D? [32] for more intelligent
congestion control.

o Traffic matrix: We can easily calculate the traffic matrix
in a cluster with every data flow information. As shown
in Algorithm 1, to calculate the traffic volume between
any two physical nodes ipl and ip2, we just need to sum
up the volumes of individual flows between them.

o Dependency: We define two types of dependencies,
i.e., causal-dependency and co-dependency. The causal-
dependency f; — f; means that the initiation of fo
depends on the completion of f;. For example, flowA —
flowC and flowC — flowE in Figure 4. The co-
dependency f1 <> fo specifies that both f; and f, share
a common barrier. The barrier cannot be passed through
until the completion of all these co-dependent flows.
One such example is the shuffle flows that serve the
same reduce task (e.g. flowB < flow('), and another
example is the pipeline flows replicating the same block
(e.g. flowE + flowF).



Algorithm 2 Dependency

Input: f7: (src, dest) and fo: (src, dest)

Output: 1 (fi + f2); 2 (fi — f2); 3 (fi & f2); O

(otherwise).

if f1’s dest == f5’s src then
return 1

else if f1’s src == f5’s dest then
return 2

else if f1’s dest == f5’s dest then
return 3

end if

return 0

A o e

We can infer the dependency of two flows based on
their logical source and destination identities in Table III.
Algorithm 2 determines the dependency between f; and
f2. For example, we know flowA — flowC, since the
destination of flowA and the source of flowC' are both
Map 4. And flowB < flowC, since they share a same
destination, Reduce 2.

o Priority: Unlike flow dependency that reflects the inher-
ent structure of Hadoop jobs, flow priority is a metric
that depends more on the optimization objectives when
the forecasted traffic is used in network planning. For
different optimization objectives, we can define different
policies to assign flow priorities. In a normal use case
that we want to boost the execution of a Hadoop job, a
flow in an earlier phase should be assigned to a higher
priority. Because most Hadoop jobs are composed of
multiple tasks (e.g., import = map = shuffle = reduce
= export), and a job completes when the slowest task is
finished. As shown in Figure 4, import, shuffle and reduce
flows should be prioritized accordingly (e.g., flowA >
flowB > flowD) to ensure the slowest task finishes as
fast as possible. Another example of priority assignment
policy is that shorter flows in larger co-dependent groups
should be assigned with higher priorities. Using the
“shortest job first” strategy, finishing shorter flows in
larger co-dependent group first can quickly decrease the
number of blocking flows and speed up the execution of
a Hadoop job.

IV. EVALUATION

Testbed: We deployed HadoopWatch on 30 virtual ma-
chines (VMs) running on 10 physical servers. All the 10
physical servers are HP PowerEdge R320 with a quad core
Intel E5-1410 2.8GHz CPU, 8GB memory and a 1Gbps
network interface. On each physical server, we set up 3 Xen
VMs (DomU) and each of the VMs is allocated with 1
dedicated processor core (2 threads) and 1.5GB memory. We
run Hadoop 0.20.2 on all the 30 VMs for the traffic forecasting
experiments.

Evaluation metrics: In our evaluation, we study the ac-
curacy of HadoopWatch in prediction flow volumes, the time
advance of these predictions and the overhead of Hadoop-
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Watch. To collect the ground truth of Hadoop traffic volume
and timing, we use TCPdump to capture the actual time and
volume of data flows. We extract the source and destination
of each flow by parsing the application-level requests and
responses in Hadoop flows. We use the absolute difference
between the predicted volume and actual volume to evaluate
the forecasting accuracy of HadoopWatch. We use the lead
time metric to evaluate the time advance, which is defined as
(actual_time — predicted_time) of Hadoop flows.
Accuracy: Figure 5 shows the traffic volume and forecast
accuracy for four representative Hadoop jobs: Terasort, Word-
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count, Hive Join and Hive Aggregation [19]. Overall, it can
be seen that the shuffle and export phase introduced most of
the traffic for these jobs*, and we achieve high accuracy for
all types of traffic. The slight difference between the forecast
results and the actual ones is mainly caused by the control
signals and TCP retransmission packets. Besides, there are
occasionally a few dead export flows, since a slower reduce
task will be killed between a normal task and its backup
instance.

Time advance: Figure 6, 7 and 8 show the forecasting lead
time for data import, shuffle and export flows, respectively. We
use NTP [22] to synchronize the clock on these nodes. The
results show that almost 100% traffic flows are successfully
forecasted in advance. Most data import and export flows occur
soon after the corresponding traffic forecasts (<100 ms), while
most shuffle flows are forecasted much earlier in advance
(5s - 20s). Because a reduce task only initiates 5 shuffle
flows fetching intermediate data and other shuffle flows are
pending. In a small percent (< 3%) of flows, we do observe
some forecast delays that flows are forecasted after they are
actually sent out. They are either caused by deviation of clock
synchronization or monitoring delay of inotify events.

Overhead: Figure 9 compares the execution time of Hadoop
jobs with and without HadoopWatch to understand the over-
head introduced by HadoopWatch. Among all the 4 jobs we
tested, their execution time only increases by 1% to 2% with
HadoopWatch running in the cluster.

Dependency: Figure 10 shows the distribution of flow’s co-

4Note that the output of Terasort is not replicated in remote DataNodes, so
it does not introduce any export flows.

0
10G Terasort 40G Wordcount

Volume (MB)
e o 2o I
23 e = i

e
o

=]

Hive Join

10G Terasort 40G Wordcount
Export

Hive Aggregate Hive Join  Hive Aggregate

Shuffle

Accuracy of traffic volume forecasting

600 T ;
[l Without Forecasting
Il With Forecasting
500
=)
g 400
Q
Q
2
g
= 300
=
2
5
3
2
& 00
100
0 . - .
10G Terasort ~ 50G Wordcount  20G Hive Join 20G Hive Aggregate
Fig. 9. Execution time (Second)
Flow co—dependency distribution Flow causal-dependency distribution
1 I
0.8 0.8
0.6 0.6
5% 5%
a a
o o
0.4 0.4
0.2 0.2
0 I 1 2 3 0 0 1 2 3
10 10 10 10 10 10 10 10°

Number of co-dependent flows Number of causal-dependent flows

Fig. 10. Distribution of codependent and dependent flows

dependent flow numbers and casual-dependent flow numbers.
We take the 40GB Wordcount job as an example, which
consists of 658 map tasks and 20 reduce tasks. Therefore,
shuffle flows can be divided into 20 co-dependent groups.
Each group contains 658 co-dependent flows initiated by the
same reduce task. On the other hand, because of the data
locality of map tasks, a large number of them are importing
data from local disks. Thus, only a small number of shuffle



flows are casual-dependent on import flows. Meanwhile, the
output export flows of each reduce task are casual-dependent
on its input shuffle flows.

Scalability: Due to the limitations of testbed size, our
evaluation results of HadoopWatch are limited to tens of nodes.
We use simulation analysis to understand the scalability of
HadoopWatch. We first analyze the major determinants of
monitoring overhead in Forecast Agent and Forecast controller,
then estimate the HadoopWatch overhead in large production
settings.

On a worker node, our agent iteratively processes the inotify
events that are caused by multiple tasks. It just parses the
traffic related information and sends to the controller. The
memory usage is fixed, since no extra data is stored locally.
In addition, the CPU usage scale linearly with the number of
active tasks (n4,5%) on each node, since the execution of each
agent is strictly driven by these tasks’ file system events. On
the controller end, the forecasting controller continuously re-
ceives event reports from multiple agents and generates traffic
forecasts accordingly. As a result, its CPU usage scales linearly
with the number of total active tasks (Nqsr). Meanwhile, a
lot of memory is required to store the volumes of shuffle flows
between these map tasks and reduce tasks. The total memory
usage exhibits a quadratic growth as Ny, increases.
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Fig. 11. Agent overhead prediction

Based on the performance metrics collected on our testbed,
we estimate the potential overhead that HadoopWatch intro-
duces on large production clusters. Figure 11 shows the esti-
mated overhead on clusters with sizes release by Google and
Facebook. We observed that the agent only consume 6.89%
of a CPU core under hours of heavy workload. To support 30
concurrent tasks one each node in the Google cluster [7, 35],
HadoopWatch agent may take 10% consumption of a CPU
core and fixed memory. Similarly, we estimate the overhead
of HadoopWatch central controller. It will only consume a
CPU core’s 30% resources and around SOMB memory to
support hundreds of thousands of tasks running concurrently.
In summary, we believe HadoopWatch is scalable to support
traffic forecasting in large MapReduce clusters.
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Fig. 12. Central control overhead prediction

V. RELATED WORKS

Networking researchers have been exploring ways to pre-
dict and estimate network traffic demands in different envi-
ronments. For example, ISPs have employed various traffic
demand matrices in their WAN traffic engineering and capacity
planning [13, 23]. However, these methods required a large
number of past statistics, such as server logs or link data, to
provide reliable estimation of traffic demand in the next period
of time. Such techniques are not feasible in data centers, where
most of the longest-lived flows last only a few seconds [9] and
the traffic is elastic. To gain more instant information for traffic
demand forecasting, many researchers proposed to estimate the
traffic demand based on real-time measuring socket buffers in
end hosts [8, 28], or counters in switches [3, 9, 12]. Such
techniques are designed for general traffic load prediction in
data center, while our method can generate a more accurate
traffic forecast with application-level semantics captured in
real time.

Various tracing and profiling tools have been proposed
to collect execution information of Hadoop. X-Trace [15]
is integrated into Hadoop to collect cross-layer event traces
for performance diagnosis. To avoid modifying Hadoop, re-
searchers proposed to perform off-line analysis on Hadoop log
files for performance tuning and anomaly detection [16, 25].
However, HadoopWatch is focused on forecasting traffic de-
mands based on real-time file system monitoring. Compared
with a recent attempt which focused on predicting shuffle flows
by periodically scanning Hadoop logs [10], HadoopWatch can
provide more comprehensive traffic forecast and more scalable
event-driven monitoring.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed to use file system monitor-
ing to provide comprehensive traffic forecasting for big data
applications. We develop HadoopWatch, a traffic forecaster for
Hadoop, that can forecast Hadoop traffic demand accurately
and efficiently without modifying the Hadoop framework. We



believe application layer traffic forecasting is a key building
block to enable workload optimized networking in cloud data
centers and tightly integrate network design with applications.

We have implemented HadoopWatch and deployed it on
a small-scale testbed with 10 physical machines and 30
virtual machines. Our experiments over a series of MapReduce
applications demonstrate that HadoopWatch can forecast the
application layer traffic demand with very high accuracy
and time advance, while introducing little overhead to the
application performance.

Our work is a first attempt exploring the rich research space
of comprehensive traffic forecasting at application layer. With
the surge of software defined networking in cloud data centers,
we believe HadoopWatch can be useful in a many scenarios
that target to jointly optimize application performance and
network configuration, e.g., from topology optimization, traffic
engineering, flow scheduling to transport control, etc. In the
meanwhile, we also acknowledge that there are many research
problems remain to be explored in our future work. For
example, HadoopWatch is now a traffic forecaster particularly
designed for the Hadoop framework. The file selection and
monitoring mechanisms are tied to the specific parameters
of the Hadoop system. An important direction of our future
work is to explore the generic design principles to apply the
forecasting mechanisms to different big data applications, such
as Dryad [20], HBase [1], Spark [34], etc.
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