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Abstract
Recent proposals have leveraged Explicit Congestion
Notification (ECN) to achieve high throughput low la-
tency data center network (DCN) transport. However,
most of them implicitly assume each switch port has one
queue, making the ECN schemes they designed inappli-
cable to production DCNs where multiple service queues
per port are employed to isolate different traffic classes
through weighted fair sharing.

In this paper, we reveal this problem by leveraging ex-
tensive testbed experiments to explore the intrinsic trade-
offs between throughput, latency, and weighted fair shar-
ing in multi-queue scenarios. Using the guideline learned
from the exploration, we design MQ-ECN, a simple yet
effective solution to enable ECN for multi-service multi-
queue production DCNs. Through a series of testbed
experiments and large-scale simulations, we show that
MQ-ECN breaks the tradeoffs by delivering both high
throughput and low latency simultaneously, while still
preserving weighted fair sharing.

1 Introduction

Data centers host a variety of applications and ser-
vices with diverse network requirements: some services
(e.g., monitoring services) demand low latency for spo-
radic short messages; some (e.g., data-parallel computa-
tion [13]) require high throughput for large flows; while
others (e.g., online data-intensive applications) desire
both high throughput and low latency for a large num-
ber of concurrent flows [18].

To meet these requirements, ECN has been employed
as a powerful tool by recent DCN transport proposals
such as [6, 8, 29, 31, 32], and they show that a properly
tuned ECN marking scheme can deliver high through-
put and low latency simultaneously [31]. Due to their
simplicity and effectiveness, ECN-based transports such
as DCTCP [6] and DCQCN [32] are widely used in
industry—DCTCP has been integrated into various OS
kernels [3, 4] and deployed in DCNs of Google [27] and
Morgan Stanley [19]; while DCQCN has been deployed
in DCNs of Microsoft [32] to enable RDMA.

A further look at these proposals reveals that their

ECN marking schemes are mostly designed based on the
implicit assumption that each switch port only has one
queue. However, the industry trend in production DCNs
is going beyond such one queue per port paradigm [8, 9].
Today’s commodity switches already support 4–8 classes
of service queues per port [9, 10, 20]. Current oper-
ation practice is to leverage queues to segregate traffic
from different services and enforcing weighted fair shar-
ing among different queues [8, 9, 19]. For example, op-
erators assign a higher weight to all traffic belonging to a
more important real-time search application over a back-
ground backup application, thus providing differentiated
network performance. A key question in such single-
queue to multi-queue transition is the applicability of
ECN, which remains unexplored.

We point out, via extensive testbed experiments, that
the prior ECN schemes developed for the single queue
model fall short when directly migrated to the multi-
queue scenarios (§2). There exist fundamental trade-
offs between high throughput, low latency, and weighted
fair sharing. Our experiments demonstrate: 1) apply-
ing per-queue ECN with the standard marking thresh-
old derived before on each queue independently en-
sures high throughput, but can incur high latency when
many queues are active; while apportioning this thresh-
old among all the queues statically according to their
weights guarantee low latency, but can degrade through-
put when few queues are live; 2) applying per-port ECN
with such standard threshold can maintain both high
throughput and low latency, but violating weighted fair
sharing across different queues.

Motivated by above problem, we seek a solution that
can break the tradeoffs and enable ECN for multi-service
multi-queue DCNs. To this end, we present MQ-ECN, a
simple yet effective solution that achieves our goal (§3).
First, MQ-ECN takes the per-queue ECN approach to
preserve weighted fair sharing. Then, at its heart, MQ-
ECN adjusts the ECN marking threshold for each queue
based on its dynamic weighted fair share rate, rather than
sticking to its static fair share weight, which enables MQ-
ECN to well adapt to traffic variations while maintain-
ing both high throughput and low latency in a highly dy-
namic DCN environment.

We explain that MQ-ECN is feasible to implement on
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existing commodity switch hardware as MQ-ECN just
requires one additional moving average register per port
compared to the standard ECN/RED switch implementa-
tion (§4.1). We also present a MQ-ECN software imple-
mentation for testbed evaluation (§4.2). In our software
prototype, MQ-ECN is implemented as a Linux qdisc
kernel module running on a multi-NIC server to emulate
switch behaviors.

We build a small-scale testbed with 9 Dell servers
connected to a 9-port server-emulated MQ-ECN-enabled
switch. We evaluate the basic properties of MQ-ECN on
the testbed using realistic workloads [6, 16, 25]. Our
experiments demonstrate that MQ-ECN achieves both
high throughput and low latency simultaneously, while
strictly preserving weighted fair sharing. For example,
compared to per-queue ECN with the standard thresh-
old, MQ-ECN achieves up to 72.8% lower 99th per-
centile FCT for small flows while delivering similar per-
formance (e.g., within 2.7%) for large flows (§5.1).

To complement small-scale testbed experiments, we
conduct large-scale ns-2 [5] simulations to deep-dive into
MQ-ECN. Our simulation results further confirm the su-
perior performance of MQ-ECN. For example, compared
to per-queue ECN with the standard threshold, MQ-ECN
reduces the 99th percentile FCT for small flows by up
to 43.7%. In addition, MQ-ECN achieves up to 13.2%
lower average FCT for large flows compared to per-
queue ECN with the minimum threshold (§5.2). Finally,
we show, through a series of targeted simulations, that
MQ-ECN is robust to different network environments
and parameter settings, such as the number of queues,
queue weights, transport protocols, and so on (§5.3).

To make our work easy to reproduce, we make our
codes available online at: http://sing.cse.ust.
hk/projects/MQ-ECN.

2 Problem Exploration

In this section, we begin by introducing the ECN mecha-
nisms supported by existing commodity switching chips.
Then, we explore the problems and tradeoffs of applying
ECN in multi-service multi-queue DCNs. Finally, we
summarize our design goals.

2.1 ECN on Commodity Switching Chips
Today’s commodity switching chips provide multiple
ECN/RED configuration options. For example, in our
testbed, the Broadcom BCM-56538 chip supports per-
queue, per-port, and per service pool ECN markings. For
all schemes, the marking decision is made when a packet
is enqueued (required by RED [15]). The main differ-
ence among them is that they use buffer occupancy in
different egress entities to make marking decisions.
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Figure 1: [Testbed] RTT: under per-queue ECN with the
standard threshold, more queues lead to worse latency.

Briefly, in per-queue ECN marking, each queue has
its own threshold and performs ECN marking indepen-
dently to other queues. In per-port ECN marking, each
port is assigned a single marking threshold. When the
sum of queue buffer occupancy belonging to the same
port is larger than the marking threshold, packets will get
ECN marking. In per service pool ECN marking, pack-
ets are marked when total buffer occupancy in a shared
buffer pool exceeds the marking threshold.

2.2 Problems and Tradeoffs
Before exploring the problems, we first introduce the
standard ECN marking threshold derived by prior
works [7, 31] based on the single queue model. Con-
sider synchronized flows with identical round-trip times
sharing the only queue of a bottleneck link, accord-
ing to [7, 31], to fully utilize the link bandwidth while
achieving low latency, the ECN marking threshold K1

should be set as follows:

K = C ×RTT × λ (1)

where RTT is average round-trip time, C is link capac-
ity, and λ is a tunable parameter closely related to con-
gestion control algorithms2. In production DCNs, round-
trip times are relatively stable and operators can estimate
RTT through large-scale measurements to compute the
standard ECN marking threshold [17, 31].

2.2.1 Per-queue ECN with the standard threshold
In multi-queue environment, per-queue ECN marking
is widely employed by operators for its good isola-
tion among different queues. However, how to set the
ECN marking threshold for each queue is a challenge.
DCN traffic is well known for its volatility and bursti-
ness [11, 16]. Thus, to achieve high utilization in any

1We are aware that ECN/RED has two (low and high) thresholds.
Many ECN-based transports [6, 29, 31] set them to the same value.
Without loss of generality, we also assume that the low and high thresh-
olds are set to the same value to simplify analysis.

2For example, λ = 1 for regular ECN-enabled TCP which simply
cuts window by half in the presence of ECN [31].
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Figure 2: [Testbed] Average FCT statistics: under per-queue ECN with minimum threshold (e.g., K=2), it suffers from
degraded throughput as only one queue is active, thus leading to higher FCT overall.

condition, some network operators have configured the
standard marking threshold, e.g., C×RTT ×λ, for each
queue. Under this configuration, any queue can fully uti-
lize link capacity independently. However, the problem
is that when N queues are busy simultaneously, the to-
tal buffer occupancy can easily reach N times the stan-
dard threshold, thus introducing high queueing delay and
huge buffer pressure3.

To quantify such impairment, we build a small testbed
consisting of 15 servers connected to a Pica8 P-3295
GbE switch. DCTCP is enabled on all the servers4. We
configure Deficit Weighted Round Robin [26] with equal
quantum per queue on the switch. We set the per-queue
ECN marking threshold to 16 packets. We generate 8
long-lived flows using iperf from 8 servers to the same
receiver. We vary the number of queues from 1 to 8 and
evenly classify all the flows into these queues by setting
different Differentiated Services Code Point (DSCP) val-
ues. Given all the queues should have similar queueing
delay, we run ping in an active queue to measure RTT.
Figure 1 shows RTT distributions. Clearly, more queues
lead to worse latency. Compared to the single queue, the
average and 99th percentile RTTs achieved by 8 queues
degrade by 5.7X (279µs to 1582µs) and 4.9X (375µs to
1850µs), respectively.

Observation 1: Per-queue ECN with the standard
threshold suffers from poor latency when many queues
are concurrently active.

2.2.2 Per-queue ECN with the minimum threshold

To address the defect above, a natural way is to apportion
the standard threshold among all the queues according to
their fair share weights. Assume each port has N queues
in total and the weight of queue i is Wi, then the mini-
mum threshold for queue i, Ki, can be set as:

3Taking Pica8 P-3922 10GbE switch [1] as an example, it has 9MB
buffer shared by 384 queues (48 ports×8 queues/port). DCTCP [6] rec-
ommends using at least 65 packets as the threshold for 10G networks.
Hence, when 97 queues are busy simultaneously, the buffer is likely to
be overfilled. Frequent packet drops can also severely degrade latency.

4By default, we choose DCTCP as the transport protocol for all
experiments/simulations in this paper except special declaration.

Ki =
Wi∑N
j=1 Wj

× C ×RTT × λ (2)

Note that Wi∑N
j=1 Wj

is the normalized weight for queue i

and Wi∑N
j=1 Wj

×C is the minimum guaranteed rate for this

queue. Hence, the minimum threshold Ki ensures that
each queue can receive its minimum guaranteed band-
width. Since Ki is proportional to Wi, it can also pre-
serve weighted fair sharing among different queues. Fur-
thermore, given that

∑N
j=1 Kj = C × RTT × λ, such

configuration can achieve good latency and burst toler-
ance regardless of the total number of queues.

However, the problem of this method is that it can seri-
ously degrade link utilization, especially when only few
queues are active. The reason is that the bandwidth for
inactive queues cannot be fully utilized by active queues
as they are throttled by the statically-configured mini-
mum ECN marking thresholds. The low throughput di-
rectly degrades the flow completion times (FCT).

To quantify this impact, we develop a client/server ap-
plication to generate traffic according to the web search
workload [6]. The client instance, running on one server,
periodically generates requests to server instances, run-
ning on the other 14 machines, to fetch data. All the
traffic is classified into the same switch queue. Since
only one queue is active, to fully utilize link capacity,
we should assign the standard threshold, e.g., 16 pack-
ets, for this queue. Given we have 8 queues with equal
weights, the corresponding minimum threshold for one
queue is 2 packets. Thus, we evaluate the performance
of both 16 packets and 2 packets in the experiment. Fig-
ure 2 shows the FCT results across different flow size
regions. It turns out that the scheme with the threshold
of 16 packets achieves 7.2 − 23.5% lower overall av-
erage FCT (due to higher throughput) compared to that
with the minimum threshold of 2 packets. This perfor-
mance improvement stems mainly from the flows larger
than 100KB.

Observation 2: Per-queue ECN with the minimum
threshold cannot maintain high throughput especially
when few queues are concurrently active.
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Figure 3: [Testbed] Aggregate goodput statistics: in per-
port ECN, a queue with more flows grabs more bandwidth.

2.2.3 Per-port and per service pool ECN

Unlike above two approaches, per-port ECN can achieve
both high throughput and low latency with the standard
threshold. However, the problem is that it cannot ensure
isolation among different queues of the same port [10].
This is because packets from one queue may get marked
due to buffer occupancy of the other queues belonging to
the same port. This undesirable interaction can severely
violate weighted fair sharing among queues. We believe
the problem will deteriorate under per service pool ECN
marking because in such case queues belonging to even
different ports may interfere with each other.

To understand this impairment, we start several long-
lived TCP flows from two senders to the same re-
ceiver. We classify traffic into two services based on
their senders. On the switch, both services have a equal-
quantum dedicated queue. The per-port marking thresh-
old is 16 packets. We vary the numbers of flows and
measure aggregate goodputs for two services. Ideally,
both services should always equally share the link capac-
ity. Figure 3 shows the actual share results. When ser-
vice 1 has 1 flows and service 2 has 4 flows, their aggre-
gate goodputs are 403Mbps and 539Mbps, respectively.
When the number of flows in service 2 is increased to
8, its aggregate goodput further reaches 688Mbps. This
suggests that under per-port ECN marking, packets of
service queue 1 get over-marked due to the aggressive-
ness of packets in service queue 2, thus making service 1
fail to achieve its weighted fair share rate.

Observation 3: Per port and per service pool ECN can
violate weighted fair sharing among different queues.

2.3 Design Goals
Motivated by the above problems, we aim to design an
ECN marking scheme for multi-service multi-queue pro-
duction DCNs with the following properties:

• High throughput: Our scheme must be work-
conserving. Active services should be able to fully
utilize the network bandwidth as long as they have
enough demands.

• Low latency: Our scheme should maintain low buffer
occupancy in order to provide low queueing delay and
good burst tolerance.

• Weighted fair sharing: Our solution should strictly
preserve the weighted fair sharing policy among dif-
ferent service queues at any time.

• Compatible with legacy ECN/RED implementa-
tion: Although there are a few ECN improvements
that leverage dequeue marking [31], to the best of our
knowledge, few chip providers have offered the sup-
port. Therefore, we choose to design a scheme that
can benefit from most ECN features that are available
on existing switching commodity chips.
We show how MQ-ECN achieves the first three goals

in the next section. To achieve the last goal, we require
MQ-ECN to perform RED-like enqueue marking, e.g.,
comparing the average queue length against a threshold
at the enqueue side. And we discuss our implementation
requirements in §4.1.

3 The MQ-ECN Design

3.1 Design Guideline
The above problem exploration has guided our design of
MQ-ECN. The lesson we learned is two-fold:

• To avoid interference among different queues and pre-
serve weighted fair sharing, the ECN marking should
be performed on a per queue basis while complying
with the weights across different queues.

• To achieve both high throughput and low latency si-
multaneously, we should not set static ECN marking
thresholds for queues—applying the standard thresh-
old on each queue independently can cause high la-
tency (observation 1), while apportioning this thresh-
old among all queues statically according to their
weights can lead to low throughput (observation 2).
Instead, the ECN marking threshold for each queue
should adapt to traffic dynamics, and it should be set
in a way that can barely maintain its weighted fair
share rate while not introducing extra queueing delay.
More specifically, for each queue, if its input rate is
larger than its weighted fair share rate, we should use
ECN to properly throttle it for latency; otherwise, we
should not impose any constraint in order not to affect
its throughput. As a result, the core of MQ-ECN is to
derive such a proper ECN marking threshold for each
queue according to its weighted fair share rate.
In our implementation, we find that the ECN threshold

setting is closely related to the underlying packet sched-
uler that enforce the weighted fair sharing. Thus, in the
following, we first describe the base design of MQ-ECN
with ideal Generalized Processor Sharing (GPS) [23].
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Then we discuss how to extend the base design to prac-
tical packet scheduling algorithms that are widely imple-
mented in existing commodity switching chips.

3.2 MQ-ECN with Ideal GPS
3.2.1 Base Model
We consider a switch output link with the capacity C.
The switch uses GPS as the underlying scheduler. There
are N flows in total and the demand of flow i is ri. Flow
i is mapped to queue i with the weight of wi

5. The total
demand is A, and A =

∑N
i=1 ri. Let α denote the fair

share rate and wiα is the corresponding weighted fair
share rate for flow i. According to [28], if A > C, the
link is congested and α is the unique solution for equa-
tion C =

∑N
i=1 min(ri, wiα); if A ≤ C, then there is

no congestion and α = max{ ri
wi

}. The output rate of
queue i is given by min(ri, wiα).

According to design guideline in §3.1, we classify the
queues into two categories based on the relations be-
tween their input rates and weighted fair share rates. For
queues whose ri > wiα, we use the following Equa-
tion (3) to throttle their input rates to keep queue oc-
cupancy and maintain low latency. For queues whose
ri ≤ wiα, they should not be constrained.

Ki = wiα×RTT × λ (3)

However, in order to enforce the scheme, the premise
is to identify the queues whose ri > wiα and estimate
their weighted fair share rates (e.g., output rates) wiα,
which was a challenge. Some previous works [22, 28]
first estimate the input rates ri and then calculate the
weighted fair share rates wiα using various complicated
heuristics in the context of FIFO scheduling. Accurate
rate estimation is challenging in data centers as traffic is
volatile and bursty. Unlike previous approaches, we use
GPS as the underlying scheduler. Thus, we can take ad-
vantage of the special properties of GPS to address this
challenge in a much simpler way.

Note that GPS serves all backlogged queues in a bit-
by-bit round-robin fashion. Assume quantumi = wi

bits is the quantum for queue i in a round, and Tround

is the total time to serve all queues once. In case ri >
wiα for queue i, the data in the queue will keep growing
and eventually use up its quantumi in a round, then we
can use quantumi

Tround
to calculate the output rate of queue i,

which is wiα. Thus, Equation (3) can be translated to:

Ki =
quantumi

Tround
×RTT × λ (4)

where quantumi, RTT and λ are known while Tround

can be well estimated through continuous sampling as
we show later in §3.3.

5Given each queue only has one flow, we use ‘flow’ and ‘queue’
interchangeably in §3.

Interestingly, though intended for queues whose ri >
wiα, we find that Equation (4) can also be applied to
queues whose ri ≤ wiα with no harm. Here is the rea-
son. For a queue i whose ri ≤ wiα, the data drained
in a round is no more than quantumi, this means that
we can use quantumi

Tround
to safely cap the output rate of

queue i, which is ri. Thus applying Equation (4) to
queue i does not throttle its input rate, but still allows it to
grow beyond its weighted fare rate before taking effect.
This greatly simplifies our design because, we can ap-
ply Equation (4) to every queue with no differentiation,
without the need of explicitly identifying the relations
between their input rates and weighted fair share rates.
As a result, Equation (4) establishes the ECN marking
scheme of MQ-ECN with the ideal GPS scheduler.

3.2.2 Why it works?
We find Equation (4) well achieves our design goals in
§2.3. First, quantumi ensures that different queues have
thresholds in proportion to their weights, thus preserv-
ing the weighted fair sharing. Second, Tround reflects
traffic dynamics of the link and automatically balances
its throughput and latency. When there are more queues
whose input rates exceed their weighted fair share rates,
Tround tends to become larger, then Ki automatically
becomes smaller to maintain low latency. When there
are fewer queues reach their weighted fair share rates,
Tround becomes smaller, then Ki automatically becomes
larger to maintain high throughput.

Furthermore, in practice, Tround may change drasti-
cally because data center traffic is volatile and bursty.
Accurately estimating Tround is challenging and devia-
tion is unavoidable. However, we find that MQ-ECN can
be self-healing:
• Assume that Tround is over-estimated initially, we get

a smaller Ki which degrades throughput. Then more
and more queues will be over-throttled by MQ-ECN
and cannot achieve their weighted fair share rates. As
a consequence, Tround becomes smaller.

• Assume that Tround is under-estimated initially, we
get a larger Ki which increases latency. Then more
and more queues will ramp up and exceed their
weighted fair share rates. As a consequence, Tround

becomes larger.
Therefore, an inaccurate initial estimation for Tround can
be cured by itself eventually in the later stages. Further-
more, in our implementation, to prevent any temporary
impact of under-estimation, we use Equation (5) below
to bound it, considering that the weighted fair share rate
should never be larger than the link capacity. Our eval-
uation results in §5 further confirm that MQ-ECN works
well in practice.

Ki = min(
quantumi

Tround
, C)×RTT × λ (5)

5
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3.3 MQ-ECN with Practical Packet Sched-
ulers

In this section, we show how to extend the solution de-
rived from ideal GPS to practical packet scheduling algo-
rithms that try to approximate GPS. These schemes can
be generally divided into two classes: fair queueing and
round robin. Fair queueing schemes, such as Weighted
Fair Queueing [14], achieve good fairness in general, but
they are expensive to implement due to high O(log(n))
time complexity (n is the number of queues). Round
robin schemes [21, 26] suffer from short-term burstiness
and unfairness, but they are widely implemented in com-
modity switching chips for their O(1) time complexity.
For example, some dominant chipsets such as Broad-
com Trident-I&II [2] adopted in many production data
centers only support several round-robin schemes, such
as Weighted Round Robin (WRR) and Deficit Weighted
Round Robin (DWRR). Hence, we mainly focus on
round robin schemes in this paper.

To apply Equation (5) for a packet scheduling algo-
rithm, we need to obtain average round time Tround

and per-queue quantum quantumi in the new context
of this algorithm. Here, we show how to get Tround and
quantumi for two popular round-robin schemes: WRR
and DWRR. We envision that similar approaches can be
extended to other round-robin schemes.

3.3.1 Estimate Tround

Round-robin packet scheduling algorithms usually serve
queues in a circular order. Intuitively, one can obtain a
sample of Tround whenever the scheduler finishes serv-
ing all the queues in a round. However, the sample fre-
quency of this approach is directly affected by the to-
tal number of active queues. When many queues are
concurrently active, it cannot track traffic dynamics ef-
ficiently. Hence, we propose to sample Tround whenever
a queue just finishes its service in a round. A benefit is
that such sampling frequency is independent to the num-
ber of queues. We assume that each queue i maintains a
variable Tpre to store the time stamp when queue i fin-
ishes the service in previous round. Every time queue
i finishes its service, it records the current time stamp
Tnow and calculates a round time sample Tsample as:
Tsample = Tnow − Tpre. Then we reset Tpre with Tnow.
Every time we get a sample, we smooth Tround using
exponential filter as follows:

Tround = β × Tround + (1− β)× Tsample (6)

where β is a parameter in (0, 1). We note that the above
approach may have two potential limitations. First,
Tround will be updated too frequently when there are
many empty queues. Second, sampling stalls when the

link is idle. To address the first limitation, we only sam-
ple Tround on active queues. If queue i is empty, we just
reset Tpre with Tnow and move forward to next queue.
To address the second limitation, we simply set Tround

as β × Tround (as if we get a Tsample of 0) when the
switch port is idle for a pre-defined Tidle time.

3.3.2 Derive quantumi

Deriving quantumi for WRR and DWRR is relatively
simple. Recall that quantumi defines the maximum
amount of data a queue can send in a round.
• WRR: In the latest implementation of WRR on chips,

each queue is configured with a quantum Qi worth of
bits, and in each round queue i can at most transmit
Qi (rather than a fixed number of packets in earlier
proposals [21]). Thus, quantumi = Qi for WRR.

• DWRR: In the implementation of DWRR, each queue
is also configured with a quantum Qi worth of bits.
Typically, Qi should be no smaller than maximum
transmission unit (MTU) to provide O(1) time com-
plexity [26]. Instead of Qi, the DWRR scheduler
maintains a deficit counter for each queue to bound
the maximum amount of data to send in each round.
This deficit counter maintains the unused quota left in
previous round, and is incremented by Qi in current
round (or reset to 0 if the queue is empty). Consider-
ing queue i keeps backlogged for M rounds, let senti
denote the total amount of bits sent by queue i in this
period. We can bound senti as follows [26]:

M ×Qi −MTU ≤ senti ≤ M ×Qi +MTU (7)

On average, the amount of data queue i can send in
each round is: senti

M = [Qi−MTU
M , Qi+

MTU
M ] ≈ Qi.

Thus, we set quantumi = Qi for DWRR.

3.4 Discussion

Weighted Fair Queueing: The reader may wonder how
to extend MQ-ECN to weighted fair queueing (WFQ)
or other fair queueing schemes. Unlike round robin
schemes, WFQ does not have the explicit round concept.
So it is difficult to directly apply Equation (5) to WFQ.

A straightforward approach is to divide the standard
ECN marking threshold to all backlogged queues. For
example, we can define a queue is backlogged if it is not
empty. We use wsum to denote the sum of weights of all
backlogged queues, and wsum can also be updated using
exponential filter like Tround. The ECN marking thresh-
old for queue i can be set as wi

wsum
× C × RTT × λ.

However, this formula is built on an implicit assumption
that a non-empty queue is able to use up its weighted fair
share rate, which may not always hold in all cases. In
fact, wi

wsum
× C is the lower bound for wiα when link
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is congested. Hence, the above approach may under-
estimate weighted fair share rates and derive lower ECN
marking thresholds. We believe a key factor for this ap-
proach is to accurately define the backlogged queues and
quickly identify them, which may not be so easy. How-
ever, a more general MQ-ECN scheme that better sup-
ports WFQ is our future work.

Strict Priority Queueing: In production DCNs, net-
work operators may reserve few (typically one) extra
queues with strict higher priority to deliver a small
amount of important control messages. The remaining
queues are typically scheduled using DWRR/WRR in the
lowest priority. MQ-ECN does not directly apply to such
scenario as well. As an approximation, for strict higher
priority queues without round concept, we statically set
their marking thresholds to the standard marking thresh-
old C×RTT×λ. For DWRR/WRR queues in the lowest
priority, we still apply MQ-ECN (Equation (5)) to calcu-
late dynamic marking thresholds.

Probabilistic Marking: ECN/RED actually has two
thresholds and a maximum marking probability to per-
form a probabilistic marking. When two thresholds
are set to the same value, the maximum marking prob-
ability no longer takes effect. Some transports, e.g.,
DCQCN [32], require such probabilistic marking by
setting different values for two thresholds. MQ-ECN
can be easily extended to perform such probabilistic
marking. Let Kmin, Kmax and Pmax denote the low
standard threshold, the high standard threshold and the
maximum marking probability derived under the single
queue model. The low/high thresholds and the maxi-
mum probability for queue i of MQ-ECN are Ki,min,
Ki,max and Pi,max, respectively. They can be given
as: Ki,min = Kmin × min( quantumi

C×Tround
, 1), Ki,max =

Kmax ×min( quantumi

C×Tround
, 1), and Pi,max = Pmax.

4 Implementation
In this section, we first analyze the feasibility of MQ-
ECN implementation on switching chips, and then de-
scribe a software prototype of MQ-ECN in detail. An
implementation of MQ-ECN on switching chip hardware
is under negotiation but beyond the scope of this work.

4.1 Switch Implementation
In typical switch implementation for ECN/RED, there is
a comparison for an averaged queue length and a static
threshold, which is setup using registers. In MQ-ECN’s
implementation, the comparison is between the same av-
erage queue length and a dynamic threshold. In this sec-
tion, we discuss the implementation complexity for the
dynamic threshold. To calculate Ki for a queue, we need
to calculate Tround. The calculation of Tround can be

Figure 4: MQ-ECN software stack.

implemented by the moving average of round robin time
taken on scheduling. Compared to the per queue aver-
age queue length, Tround is per port. Therefore, MQ-
ECN keeps the same scale implementation complexity
as ECN/RED, as we just need one additional register per
port to store Tround.

However, one potential challenge is that too frequent
moving average calculation cannot be easily achieved by
switching chips. This problem becomes more and more
serious as the link capacity of production DCNs keeps
increasing in recent years. To the best of our knowledge,
some chip vendors take a time based moving average cal-
culation to address this challenge. For example, for av-
erage queue length calculation of ECN/RED, the mov-
ing average is taken for a static interval at microseconds
granularity rather than each packet arrival/departure.
Similarly, our Tround moving average update can also be
implemented using a time based version. In our discus-
sion, we prefer a time related to the transmission time of
an MTU. Taking 10G link capacity and MTU=9KB as an
example, the transmission time is 7.2µs. The moving av-
erage calculation at this time granularity can be achieved
by most switching chip vendors as we know.

In summary, MQ-ECN maintains the same scale im-
plementation complexity as ECN/RED as it just requires
one addition moving average register per port.

4.2 Software Prototype
Since we cannot program our switching chips, we use a
server with multiple Network Interface Cards (NICs) to
emulate the switch and implement MQ-ECN on top of
that. MQ-ECN is implemented as a new Linux queue-
ing discipline (qdisc) kernel module. Hence, we can
avoid the overhead of data copy and context switch be-
tween user and kernel space. Figure 4 shows the soft-
ware stack of MQ-ECN. MQ-ECN prototype has three
components: a packet classifier, a packet scheduler, and
a rate limiter. Instead of modifying the Linux tc, we ex-
pose new sysctl interfaces for users to configure the
new qdisc module in user space.

Packet Classifier: MQ-ECN kernel module maintains
multiple FIFO transmit queues. Packets are classified
into different queues based on the IP DSCP field. When
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MQ-ECN kernel module receives a packet from IP layer,
it: 1) classifies the packet based on DSCP value, 2) cal-
culates the ECN marking threshold of the corresponding
queue, 3) performs ECN marking if needed, and 4) en-
queues the packet.

Packet Scheduler: The packet scheduler of MQ-ECN
kernel module is built on the top of the DWRR sched-
uler available in Linux. Our implementation can also be
easily extended to WRR by resetting deficit counter to 0
whenever a queue finishes its service in a round.

The DWRR scheduler maintains a linked list for all
active queues. When an empty queue receives a packet,
it is inserted to the tail of the linked list. The scheduler
always serves the head node of the linked list. If a queue
just finishes its service and but still has packets, it is in-
serted to the tail of the linked list again. Each queue has
a variable Tstart to store the time stamp when this queue
is inserted to the linked list last time. Whenever a queue
finishes its service, we use current time minus Tstart to
get a sample of Tround. In this way, we only sample
Tround on active queues, just as §3.3.1 described.

Rate Limiter: One implementation challenge is to make
the buffer occupancy in qdisc reflect the real buffer
occupancy of the emulated switch port. A packet de-
queued by qdisc further goes through NIC driver and
NIC hardware before it is delivered to the wire. If we
dequeue packets from qdisc as fast as possible, many
packets can still get queued on NIC driver and hardware.
Consequently, the buffer occupancy in qdisc is likely
to be smaller than the actual buffer occupancy of the em-
ulated switch port. To avoid such impact, we implement
a Token Bucket rate limiter to rate-limit the outgoing
traffic from qdisc at 99.5% of the line rate. The bucket
size is ∼1.67 MTU (2.5KB) in our experiment, which is
large enough to saturate more than 99% of link capac-
ity while introducing little burstiness. In this way, we
can eliminate undesirable buffering in other places and
make the buffer occupancy in qdisc accurately reflect
the buffer occupancy of the emulated switch port.

To confirm the effectiveness of the rate limiter, we in-
stall MQ-ECN kernel module on a server with 10 GbE
NICs to emulate switch. Two other servers are connected
to this software switch. The shaping rate is 995Mbps.
The bucket size is 2.5KB. We start a long-lived TCP
flow to measure goodput. The goodputs with and without
kernel module are 937Mbps and 942Mbps, respectively.
MQ-ECN module introduces ∼0.53% goodput degrada-
tion, exactly enforcing the desired rate (995Mbps).

5 Evaluation

In this section, we use testbed experiments and ns-2 [5]
simulations to answer following three key questions:
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Figure 5: Flow size distributions used for evaluation.

• How does MQ-ECN perform in practice? In a static
flow experiment (§5.1.1), we show that MQ-ECN
strictly preserves weighted fair sharing while main-
taining high throughput and low latency. Using realis-
tic workloads in our testbed experiments (§5.1.2), we
show that MQ-ECN outperforms the other schemes.
For example, it achieves up to 72.8% lower 99th per-
centile FCT for small flows compared to the per-queue
ECN with standard threshold.

• Does MQ-ECN scale to large data center topolo-
gies? Using large-scale ns-2 simulations (§5.2), we
show that MQ-ECN scales to multi-hop topologies
and delivers the best overall performance. For exam-
ple, it reduces the 99th percentile FCT for small flows
by up to 43.7% compared to the standard threshold,
while achieving up to 13.2% lower average FCT for
large flows compared to the minimum threshold.

• How robust is MQ-ECN to network environments
and parameter settings? Using a series of targeted
simulations (§5.3), we show that MQ-ECN is robust to
1) the number of queues (§5.3.1), 2) transport protocol
(§5.3.2), and 3) parameter settings (§5.3.3).

Benchmark traffic: We use four traffic distributions
based on measurements from production DCNs (Fig-
ure 5): a web search workload [6], a data mining work-
load [16], a cache workload [25], and a Hadoop work-
load [25]. In general, all the workloads are heavy-
tailed. Among them, the web search workload and the
cache workload are more challenging since they are less
skewed. For example, ∼60% of all bytes in the web
search workload are from flows smaller than 10MB.
Consequently, in the web search workload, it is likely
that several flows are concurrently active in the same
link, thus increasing network contention. Ideally, dif-
ferent services have different traffic distributions. How-
ever, to create more challenges, we hypothetically use the
most challenging web search workload for all services in
the testbed experiments. We use all the four workloads
in the large-scale simulations.

Schemes compared: We evaluate the performance of
three schemes, MQ-ECN, per-queue ECN with the stan-
dard threshold and per-queue ECN with the minimum
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Figure 6: [Testbed] (a) Aggregate goodput of two services
achieved by MQ-ECN. (b) RTT distributions.

threshold. We exclude per-port ECN as it can violate
weighted fair sharing. For MQ-ECN, there are only two
parameters to configure (§3.3.1): β and Tidle. In both
testbed experiments and simulations, we set β to 0.75
and Tidle to the transmission time of a MTU (12µs in 1G
testbed and 1.2µs in 10G simulation). We further analyze
the sensitivity to above parameters in §5.3.

Performance metric: We use the flow completion time
(FCT) as the performance metric. We consider the over-
all average FCT of all flows and average FCT across dif-
ferent flow sizes (small, medium and large). To evalu-
ate tail latency, we also show the 99th percentile FCT of
small flows. For clear comparison, we normalize the fi-
nal FCT results (not per flow FCT) to the values achieved
by per-queue ECN with the standard threshold.

5.1 Testbed Experiments

Testbed setup: We build a small-scale testbed with 9
servers connected to a 9-port server-emulated MQ-ECN-
enabled switch. Each server is a Dell PowerEdge R320
with a 4-core Intel E5-1410 2.8GHz CPU, 8G memory, a
500GB hard disk, and the server-emulated switch has 10
Broadcom BCM5719 NetXtreme Gigabit Ethernet NICs.
We reserve one NIC on the server-emulated switch for
control access. All the servers run Linux kernel 3.18.11
and DCTCP is enabled. We set TCP RTOmin to 10ms
as many proposals suggest [6, 19, 30]. On the server-
emulated switch, we deploy a MQ-ECN qdisc kernel
module with 4 queues (per port) scheduled by DWRR.
The quantum of each queue is 1MTU. We disable of-
floading techniques on the switch to avoid large seg-
ments. Each switch port has 96KB buffer which is com-
pletely shared by all the queues in a first-in-first-serve
bias. The base RTT is ∼250µs. Given that, we set the
standard ECN marking threshold to 32KB.

5.1.1 Static Flow Experiment
We begin with a basic static flow experiment to show that
MQ-ECN can achieve high throughput, low latency and
weighted fair sharing simultaneously. We start 5 TCP
flows from two senders to the same receiver and classify

them into two services based on their senders. Service 1
has 1 flow and service 2 has 4 flows. Both services have a
equal-quantum dedicated queue on the switch. We eval-
uate the performance of MQ-ECN and per-queue ECN
with the standard threshold.

Figure 6(a) shows the sharing results achieved by MQ-
ECN. The sharing result achieved by the standard thresh-
old is quite similar to Figure 6(a). We omit it due to
space limitation. In contrast to Figure 3(a), both services
roughly achieve the same goodput. We also use ns-2 sim-
ulation to reproduce the experiment and find that MQ-
ECN achieves similar convergence time as the standard
threshold. This suggests that MQ-ECN can strictly pre-
serve weighted fair sharing. Furthermore, the sum of ag-
gregate goodputs of two services achieved by MQ-ECN
is ∼936Mbps. This suggests that MQ-ECN can fully uti-
lize the link capacity.

We also measure RTT of the dedicated queue of ser-
vice 2 using ping. Figure 6(b) gives the RTT distribu-
tions achieved by MQ-ECN and the standard threshold.
Compared to the standard threshold, MQ-ECN achieves
32.3% (651µs to 441µs) and 31.5% (782µs to 536µs)
lower RTT in average and the 99th percentile. Recall
that the base RTT is ∼250µs. Hence, MQ-ECN reduces
queueing delay by ∼50%. This suggests that MQ-ECN
can achieve low latency.

5.1.2 Realistic Workloads

For this experiment, we develop a client/server appli-
cation to generate dynamic traffic according to the web
search workload [6]. The client application, running on
1 server, generates requests through persistent TCP con-
nections to the other 8 servers to fetch based on a Poisson
process. The server applications, running on the other 8
servers, respond with requested data. To map a flow to a
service queue, the server application uses setsockopt
to set DSCP for outgoing packets. We create two traffic
patterns: balanced traffic and unbalanced traffic. In bal-
anced traffic, each flow is randomly mapped to a service
queue. In unbalanced traffic, each flow is mapped to 4
service queues with probabilities of 10%, 20%, 30% and
40%. We vary the network load from 10% to 90%.

Figure 7 and 8 show the overall average FCT (a), FCT
across small (0,100KB] (b,c) and large (10MB,∞) flows,
respectively. Due to space limitation, we omit the re-
sults for the medium (100KB,10MB] flows whose per-
formance is quite similar to that of overall average FCT.
We make the following three observations.

Overall: MQ-ECN generally achieves the best overall
average FCT. Compared to the standard threshold, MQ-
ECN delivers similar performance at low loads (≤ 50%)
and achieves up to ∼2.85% (balanced) and ∼1.65% (un-
balanced) lower FCT at high loads. When the load is
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Figure 7: [Testbed] Balanced traffic pattern: FCT statistics across different flow sizes.
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Figure 8: [Testbed] Unbalanced traffic pattern: FCT statistics across different flow sizes.

low, it is not likely that multiple queues are concurrently
active. Hence, both MQ-ECN and the standard thresh-
old can achieve good FCT due to their high throughput.
When the load is high, MQ-ECN achieves better perfor-
mance by efficiently reducing packet latency. Compared
to the minimum threshold, MQ-ECN outperforms it at
all loads for both traffic patterns.

Small flows: MQ-ECN performs similar as the mini-
mum threshold for small flows while significantly out-
performing the standard threshold. Compared to the
standard threshold, MQ-ECN reduces the average FCT
for small flows by up to ∼61.3% (balanced) and ∼42.9%
(unbalanced). The performance gap on 99th percentile
FCT is even larger: MQ-ECN achieves up to ∼72.8%
(balanced) and ∼71.3% (unbalanced) lower 99th per-
centile FCT for small flows. We attribute the large tail
FCT of the standard threshold to its poor burst tolerance.
When all the 4 queues are concurrently active, the total
buffer occupancy achieved by the standard threshold can
easily reach 128KB (4× 32KB), thus overfilling shallow
switch buffer (96KB).

Large flows: MQ-ECN also achieves good performance
for large flows. Compared to the standard threshold,
the average FCT for large flows of MQ-ECN is within
∼2.7% for the balanced traffic pattern and ∼1.8% for
the unbalanced traffic pattern. This is expected be-
cause MQ-ECN adjusts the ECN marking threshold for
each queue based on its dynamic weighted fair share
rate, thus not adversely affecting its throughput. By
contrast, the minimum threshold, due to its throttle on
rates, delivers the worst performance for large flows: it
achieves ∼1.2–4.4% (balanced) and ∼1.8–7.4% (unbal-
anced) larger FCT compared to the standard threshold.

5.2 Large-scale NS-2 Simulations
In this section, we use ns-2 [5] simulations to evaluate
MQ-ECN’s performance in large-scale DCNs.

Topology: We use a 144-host leaf-spine topology with
12 leaf (ToR) switches and 12 spine (Core) switches.
Each leaf switch has 12 10Gbps downlinks to hosts and
12 10Gbps uplinks to spines, forming a non-blocking
network. The base RTT across the spine (4 hops) is
85.2µs. We employ ECMP for load balancing.

Workloads: We use all the 4 flow size distributions in
Figure 5. Since there are 144 hosts, we have 144 × 143
communication pair in total. We evenly map these pairs
to 8 services. Every two services share a flow size distri-
bution. All simulations last for 50000 flows.

Transport: We use DCTCP by default. The initial win-
dow is 16 packets. We set both initial and minimum
value of TCP RTO to 5ms.

Switch: Each switch port has 300KB buffer shared by
all the 8 queues in a first-in-first-serve bias. We set the
standard marking threshold to 65 packets. We use both
DWRR and WRR in our simulations. All the queues
have the same quantum of 1.5KB.

Figure 9 and 10 give the FCT results across different
flow sizes. In the interest of space, we omit the results for
the medium flows (100KB,10MB] whose performance
trend is very similar to that of overall average FCT. We
have the following three observations.

Overall: MQ-ECN generally achieves the best overall
performance, consistent with our testbed experiments in
§5.1. Compared to the standard threshold, MQ-ECN
achieves up to ∼4.1% lower average FCT. The perfor-
mance of the minimum threshold is volatile. Compared
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Figure 9: [Simulation] DWRR: FCT statistics across different flow sizes
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Figure 10: [Simulation] WRR: FCT statistics across different flow sizes

to the other schemes, it shows obvious performance gap
at low loads. For example, it achieves ∼11% larger FCT
at 10% load compared to the standard threshold. This is
because, at low loads, it is likely that only few queues are
active. In such scenario, the minimum threshold severely
degrades throughput. When the load increases, the min-
imum threshold shows better performance as expected.
However, at extremely high loads, the performance of
the minimum threshold degrades again, which is counter-
intuitive. We suspect the reason is because ECMP is ag-
onistic to both flow sizes and service classes, and it does
not guarantee to spread large flows from the same service
class across different paths. When the load is unbalanced
or large flows from the same class are concentrated (even
overall traffic is balanced), the problem may arise.

Small flows: MQ-ECN greatly outperforms the standard
threshold for small flows. Compared to the standard
threshold, MQ-ECN reduces the average and 99th per-
centile FCT for small flows by up to 23.7% and 43.7%,
respectively. Compared to the minimum threshold, the
average FCT for small flows with MQ-ECN is within
24.3% for DWRR and 26.4% for WRR. The performance
gap is because that the minimal threshold trades through-
put for better latency. In our simulation, 65.1% of small
flows are smaller than 24KB (16 packets), which are
small enough to complete within one RTT. The minimum
threshold can provide ideal performance for such mice
flows since their FCTs are only determined by latency.

Large flows: For large flows, MQ-ECN achieves com-
parable performance as the standard threshold while sig-
nificantly outperforming the minimum threshold. This
suggests MQ-ECN achieves high throughput. MQ-ECN
even slightly outperforms the standard threshold at ex-

tremely high loads. For example, compared to the
standard threshold, MQ-ECN with WRR achieves 2.1%
lower average FCT for large flows at 80% load. This
is because MQ-ECN can provide better burst tolerance,
thus greatly reducing packets drops and retransmissions.
As we check, at 80% load, the standard threshold with
WRR causes 720 TCP timeouts while MQ-ECN only has
45. As expected, the minimum threshold performs the
worst. For example, it is 13.2% worse than MQ-ECN
with WRR at 90% load for large flows.

5.3 MQ-ECN deep dive
In this section, we conduct a series of targeted simula-
tions to evaluate MQ-ECN’s robustness to network en-
vironments and parameters. By default, we use DCTCP
as the transport protocol and DWRR (8 queues) as the
packet scheduler. The other settings are same as §5.2

5.3.1 Impact of the Number of Queues

In the future, switching chips may support more and
more queues. To verify whether MQ-ECN can scale to
a larger number of queues, we increase the number of
queues per switch port to 32. In the interest of space,
we only show overall performance and average FCT for
large flows in Figure 11.

We find that MQ-ECN still maintains the best over-
all performance. However, the performance of the min-
imum threshold degrades significantly, particularly at
high loads. It is 35.7% worse than MQ-ECN at 90%
load for overall average FCT. The reason behind this is:
at a given load, the more queues we use, the less likely
that the majority of queues are concurrently active. Thus,
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Figure 11: [Simulation] FCT with 32 queues.
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Figure 12: [Simulation] FCT with ECN∗.

the throughput of the minimum threshold is affected, en-
larging FCT for large flows. By contrast, MQ-ECN can
effectively adjust ECN marking thresholds based on traf-
fic dynamics to maintain high throughput. This indicates
that MQ-ECN is robust to the number of queues.

5.3.2 Impact of Transport Protocol

In addition to DCTCP, there are many other ECN-based
DCN transport protocols, such as ECN∗ [31]. Unlike
DCTCP, ECN∗ simply reduces the window by half in the
presence of ECN. Hence, ECN∗ is more sensitive than
DCTCP. A lower ECN marking threshold can greatly af-
fect the throughput of ECN∗ [31]. For example, with
zero buffering, DCTCP can maintain 94% throughput in
theory [7] while ECN∗ only achieves 75% throughput.

We evaluate the performance of all the three schemes
with ECN∗. We set the standard ECN marking threshold
to 84 packets. As Figure 12 shows, MQ-ECN still out-
performs the other schemes under ECN∗. This indicates
that MQ-ECN can efficiently maintain high throughput
by adjusting ECN marking thresholds based on dynamic
weighted fair share rates. As expected, the throughput of
the minimum threshold degrades severely. Compared to
MQ-ECN, it increases FCT for large flows by ∼22–36%.

5.3.3 Sensitivity to Parameters

We now try to explore MQ-ECN’s sensitivity to param-
eters. Recall that MQ-ECN has two parameters to con-
figure: β and Tidle. In our simulation, β is 0.75 and
Tidle is 1.2µs (1.5KB/10Gbps) by default. Here, we
compare the default setting with the other 3 settings:
1) β=0.875, Tidle=7.2µs, 2) β=0.5, Tidle=1.2µs, and 3)
β=0.75, Tidle=7.2µs.
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Figure 13: [Simulation] FCT with different parameters.
FCT is normalized to the value achieved by default setting.

Figure 13 gives the FCT results achieved by above
4 settings. Note that FCT is normalized to the value
achieved by the default setting. In general, compared
to the default setting, the other 3 settings achieve very
close performance. Their performance is within 0.37%
for overall average FCT and 1.05% for average FCT of
small flows. The results suggest that MQ-ECN is robust
to different parameter settings.

6 Related Work
Tons of literatures working along the general ECN/RED,
e.g., [6, 12, 15, 24, 29, 31, 32], are related to MQ-ECN.
For space limitation, we do not introduce these literatures
one by one. However, the key difference is that MQ-ECN
is perhaps the first effort that investigates the problem of
applying ECN in multi-service multi-queues production
DCNs. MQ-ECN does not challenge the fundamental
principle of prior work on ECN; instead it builds on the
theory (e.g., the standard ECN marking threshold) devel-
oped by prior work especially [6, 7, 31], and extends its
applicability to a new production environment.

7 Conclusion
In this paper, we have presented MQ-ECN for multi-
service multi-queue DCN that is capable of delivering
both high throughput and low latency simultaneously,
while maintaining weighted fair sharing. We have shown
that MQ-ECN achieves all its properties without requir-
ing advanced features and is readily implementable with
existing commodity chips. At last, we performed a se-
ries of testbed experiments and large-scale simulations
to validate its performance as well as robustness to dif-
ferent network environments and parameter settings.
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