
PAC: Taming TCP Incast Congestion using
Proactive ACK Control

1Wei Bai, 1Kai Chen, 2Haitao Wu, 3Wuwei Lan, 1,4Yangming Zhao
1The SING Lab, CSE Department, Hong Kong University of Science and Technology

2Microsoft 3USTC 4UESTC

Abstract— TCP incast congestion which can introduce hun-
dreds of milliseconds delay and up to 90% throughput degra-
dation, severely affecting application performance, has been a
practical issue in high-bandwidth low-latency datacenter net-
works. Despite continuous efforts, prior solutions have significant
drawbacks. They either only support quite a limited number of
senders (e.g., 40-60), which is not sufficient, or require non-trivial
system modifications, which is impractical and not incrementally
deployable.

We present PAC, a simple yet very effective design to tame TCP
incast congestion via Proactive ACK Control at the receiver. The
key design principle behind PAC is that we treat ACK not only as
the acknowledgement of received packets but also as the trigger
for new packets. Leveraging datacenter network characteristics,
PAC enforces a novel ACK control to release ACKs in such a
way that the ACK-triggered in-flight data can fully utilize the
bottleneck link without causing incast collapse even when faced
with over a thousand senders.

We implement PAC on both Windows and Linux platforms,
and extensively evaluate PAC using small-scale testbed exper-
iments and large-scale ns-2 simulations. Our results show that
PAC significantly outperforms the previous representative designs
such as ICTCP and DCTCP by supporting 40X (i.e., 40→1600)
more senders; further, it does not introduce spurious timeout
and retransmission even when the measured 99th percentile RTT
is only 3.6ms. Our implementation experiences show that PAC
is readily deployable in production datacenters, while requiring
minimal system modification compared to prior designs.

I. INTRODUCTION

Driven by economics and technology, datacenters are being
built around the world to support various services and appli-
cations. TCP, as the de facto reliable transport layer protocol,
plays an important role in datacenter communications.

However, under high-bandwidth low-latency and shallow-
buffered datacenter environments, TCP is sensitive to in-
cast congestion collapse when multiple senders send data to
a receiver (i.e., many-to-one communication) synchronous-
ly [4, 9, 25, 29]. As the number of senders increases, the
shallow buffer on the ToR (Top-of-Rack) swtiches can eas-
ily become overfull [31], causing packet drops which lead
to TCP timeouts. TCP timeouts would impose hundreds of
milliseconds retransmission delay and up to 90% bottleneck
link throughput reduction [29]. This would severely degrade
the application performance especially those involving barrier-
synchronized communications such as MapReduce [11], S-
park [33], Dryad [17], and large-scale partition/aggregate web
applications [4, 30].

Due to the impact of the TCP incast problem, there have
been continuous efforts in the community to address it. They

can be generally divided into two categories: window-based
solutions [4, 31] and recovery-based solutions [24, 29, 34].
While significant progress has been made, the prior work in
both categories have important drawbacks.

Window-based solutions, such as ICTCP [31] and D-
CTCP [4], throttle aggregate throughput by decreasing the
TCP window (congestion window or receiver window), in
order to avoid overfilling the switch buffer and packet losses.
However, these designs are fundamentally constrained by the
number of senders they can support, e.g., 40–60 [4, 31]. This is
far from sufficient to sustain real datacenter communications.
For example, a cluster with 1500 servers running data mining
jobs sees over 80 concurrent flows per node [13]; A web
server may access several hundred memcached servers for a
single request in Facebook’s memcached cluster [23]; Worse, a
production datacenter with 6000 servers supporting web search
application witnesses over 1000 concurrent flows for a worker
node [4]. Under all these cases, even a minimal window of
1 MSS for each flow is sufficient to overwhelm the switch
buffer on a synchronized burst.

Recovery-based solutions, such as reducing-RTOmin [29],
GIP [34] and CP [24], mainly focus on reducing the impact
after packet losses. Reducing-RTOmin [29] implements a fine-
grained TCP RTO mechanism to reduce unnecessary long
waiting time after packet loss. GIP [34] eliminates timeouts by
modifying TCP stack to guarantee important packets. CP [24]
achieves rapid packet loss notifications with modifications on
both the TCP stack and switches. By design, these schemes
can support many more senders and potentially solve the above
problem. However, they entail non-trivial system modifications
which are not readily deployable. Furthermore, there is still
an open question of whether these modifications will affect
normal behaviors of TCP and increase system overhead using
the high resolution timer [29].

As a consequence, today’s incast control is facing a dilem-
ma: while the window-based solutions are incrementally de-
ployable, they are not sufficient for real communications. On
the other hand, while the recovery-based solutions are able to
to handle a larger synchronized burst, unfortunately, they are
not readily deployable.

The main contribution of this work is to solve the above
dilemma by proposing PAC, a simple yet very effective and
readily deployable incast control algorithm. To the best of our
knowledge, PAC is the first design that achieves both goals
simultaneously.

���

����
��	
����

�����	�	��

���

����

�����	�	��

��������������	�������������	���	�

������������	��������	���
������	
�������	���������	����

	��	����	������	���

���

����

�����	�	��

�����	���	������	������
��	
�

��������
��

���	
�������	� ������������	�

Fig. 1. The general idea of PAC– an illustrative example.

The key design principle behind PAC is that we treat
ACK not only as the acknowledgement of received packets
but also as the trigger for new packets. Based on this, PAC
proactively intercepts and releases ACKs in such a way that
ACK-triggered in-flight traffic can fully utilize the bottleneck
link without causing incast congestion collapse. This general
idea is illustrated in Figure 1.

However, fully utilizing the bottleneck link without causing
buffer overflow is a challenge. As shown in Figure 1, if PAC
imposes excessive delay to ACKs, it can eliminate buffer
overflow, but the link utilization and throughput may be
degraded (Figure 1(b)). If the imposed delay is not sufficient,
the buffer may still be overfilled by the ACK-triggered traffic
and incast collapse can still happen (Figure 1(a)).

To solve this challenge, PAC uses the switch buffer size
value as the initial threshold to modulate our ACK control
rhythm. Then the core idea of the PAC algorithm is simply
to wait to send back outstanding ACKs as long as the ACK-
triggered in-flight traffic does not exceed the threshold. This
simple threshold setting is inspired by the practical obser-
vations of production datacenter network characteristics, and
is provably able to fully utilize the bottleneck link without
overfilling the switch buffer (see Section III-B for details). Our
experiments also validate that it works quite well in practice. In
addition, PAC leverages ECN [26], a function widely available
on commodity switches, to address the case when the network
core experiences severe persistent congestion.

We have implemented PAC as a NDIS (Network Driver
Interface Specification) filter driver for the Windows plat-
form and as a kernel module for the Linux platform. Our
implementation is located between TCP/IP stack and NIC
(Network Interface Card) driver as a shim layer. It does
not touch any TCP/IP implementation, naturally supporting
various OS versions. In virtualized environments, PAC resides
in hypervisor (or Dom 0), well supporting virtual machines.

We build a testbed with 38 Dell servers and 2 Broadcom
Pronto-3295 Gigabit Ethernet switches. In our experiments, we
rearrange the testbed topologies so that incast can happen both
at the edge ToRs and in the network core. Our results show that
PAC can easily handle many more senders than that of DCTCP
and ICTCP, while maintaining around 900 Mbps goodput.
Even in the case of severe network core congestion, PAC can
still sustain over 700 Mbps goodput while DCTCP degrades to
100 Mbps goodput due to incast collapse (Note that ICTCP is
designed only for the edge incast not the core). Furthermore,

our measurements suggest that PAC’s ACK control does not
adversely prolong RTT and introduces little system overhead.
For example, in our experiments, the measured RTT is only
1.3ms at the 50th percentile and 3.6ms at the 99th percentile
with 100 concurrent connections. The additional CPU and
memory overhead PAC introduced on the receiver are around
1%-1.6% and tens of KBs respectively.

To complement the small-scale testbed experiments, we also
perform large-scale simulations with a large number of senders
on simulated 1G and 10G networks using ns-2 [3]. Our results
further demonstrate that PAC significantly outperforms both
ICTCP and DCTCP by supporting 40X (i.e., 40→1600) more
senders.

The rest of the paper is organized as follows. Section II dis-
cusses the background and motivation. Section III presents the
design. Section IV introduces the implementation and testbed
setup. Section V evaluates PAC through testbed experiments
and ns-2 simulations. Section VI discusses the related work.
Section VII concludes the paper.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce the TCP incast problem.
Then, we discuss two kinds of existing solutions to this prob-
lem: window-based solutions and recovery-based solutions
respectively. Finally, we discuss some practical observations
that motivate our ACK control design to the incast problem.

A. TCP Incast Problem

TCP incast congestion happens when multiple senders send
data to a same receiver synchronously. The synchronized
bursty TCP flows from many senders converge at the same
port of the switch to the receiver and overfill its shallow
buffer quickly, leading to TCP packet drops and timeouts. TCP
timeouts impose hundreds of milliseconds delay and degrade
TCP throughput greatly.

TCP incast problem was initially identified in cluster file
systems [22] and has nowadays become a practical issue in
datacenter networks. The special characteristics of datacenter
networks naturally create three preconditions for TCP in-
cast congestion [29]. First, datacenter networks are designed
to achieve high-bandwidth and low-latency using shallow-
buffered switches. Second, barrier-synchronized many-to-one
traffic is quite common in datacenters, such as the shuffle
phase of many cloud computing systems [11, 17, 33] and

partion/aggregate design pattern of many large-scale web
applications [4, 30]. Third, the traffic volume may be small.

B. Window-based Solutions

The window-based solutions such as DCTCP [4] and
ICTCP [31] have been proposed to mitigate TCP incast
congestion. The key idea of those window-based solutions is
to adjust the congestion or receive window to control in-flight
traffic, so that it will not overfill the switch buffer.

DCTCP [4] leverages ECN [26], which has been well
supported in commodity switches, to deliver congestion in-
formation. DCTCP provides much better bursty tolerance than
TCP for incast flows by marking packets to deliver congestion
notification when instant switch buffer occupation exceeds a
threshold. Further, Tuning ECN [32] accelerates the delivery
of congestion notification using dequeue marking instead of
traditional enqueue marking.

ICTCP [31], on the other hand, adaptively adjusts the
receive window on the receiver side to throttle aggregate
throughput. ICTCP measures available bandwidth and per-
flow throughput in each control interval. It only increases the
receive window when there is enough available bandwidth
and the difference of measured throughput and expected
throughput is small.

However, the window-based designs are fundamentally con-
strained because they cannot reduce the window size infinite-
ly (e.g., no less than 1 MSS (Maximum Segment Size)).
Therefore, the number of senders they can support is limited.
Suppose that there are N incast flows with the same round-
trip times RTT , sharing a bottleneck link with the capacity
of C and switch buffer size of B. The window size of flow i
is Wi(t). The queue size in switch at time t is given by:

Q(t) =

N∑
i=1

Wi(t)− C ×RTT (1)

where Wi(t) ≥MSS. Then we have Q(t) ≥ N×MSS−C×
RTT . If Q(t)min = N×MSS−C×RTT is still larger than
the switch buffer size B, no window-based solution will help.
Thus, the maximum number of senders that window-based
solutions can support is roughly (B + C ×RTT)/MSS.

To validate this, we conducted a testbed experiment. In
the experiment, we have each sender sending 64KB data to
a receiver. The congestion/receive window is set to 1 MSS,
and the switch buffer size set to 80K and 100K respectively.
We increase the number of senders and depict the results in
Figure 2. We can see that the maximum number of senders
supported are around 50 and 62 respectively, which confirms
our derivation above and also matches the results of recent
works [4, 31, 32]. However, such a performance is far from the
real requirements of communication as we showed previously.

C. Recovery-based Solutions

Unlike window-based solutions, recovery-based solutions
address incast congestion via reducing the impact of timeouts.
Vasudevan et al. [29] leverages high-resolution timers to im-
plement microsecond-granularity TCP retransmission timeout

0 8 16 24 32 40 48 56 64 72 80 88 96
0

100

200

300

400

500

600

700

800

900

1000

Number of concurrent connections

T
C

P
 g

oo
dp

ut
 (

M
bp

s)

Switch Buffer 80KB
Switch Buffer 100KB

Fig. 2. The limitation of the window-based solutions: they only support tens
of senders even with the minimal window size of 1 MSS.

mechanism. In this way, TCP can retransmit lost packets
quickly without leaving the link idle for a long time. Another
recent work GIP [34] is built on the observation that two kinds
of timeouts, FLoss-TOs and LAck-TOs, should be avoided to
improve goodput. Then, it proposed an enhanced mechanism
to eliminate these two kinds of timeouts. TCP with GIP is
less likely to suffer from timeouts even though packet losses
still happen. CP [24] simply drops a packet’s payload at an
overloaded switch and uses a SACK-like ACK mechanism to
achieve rapid and precise notification of lost packets.

By design, these recovery-based solutions can handle gener-
ic incast cases with a large number of senders. However, they
require non-trivial modifications on existing TCP/IP stack,
which makes them hard to incrementally deploy in production
datacenters. CP [24] even requires changes to the switch
hardware. Moreover, their modifications may trigger other
problems for TCP. For example, reducing RTOmin [29] may
lead to more spurious timeouts and retransmission in wide
area networks with larger RTT and introduce extra system
overheads due to the usage of high resolution timers.

D. Why propose ACK control solution?

Our overarching goal is to design a readily deployable
incast control mechanism to effectively deal with a large
number of concurrent connections (e.g., over a thousand) that
appeared in real production datacenter communications. This
is a challenge.

On the one hand, as discussed above, the window-based
approach has its intrinsic limitations because the window size
cannot be decreased infinitely (e.g., 1 MSS at minimum). Thus,
even tens of synchronized senders may be able to disable any
window-based design. On the other hand, the essence of a
recovery-based approach is to enable fast packet retransmis-
sion upon any packet loss, which is beyond the capability
of legacy TCP or commodity switches. Thus, designing a
new recovery-based method will very likely end up with non-
trivial system modifications which may hurt the incremental
deployability.

Therefore, we have to bypass the two existing directions by
seeking a new solution space. This motivates us to explore the

0 8 16 24 32 40 48 56 64 72 80 88 96
0

200

400

600

800

1000

Number of concurrent connections

T
C

P
 g

oo
dp

ut
 (

M
bp

s)

Shaping Rate=40 Kpkts/second
Shaping Rate=60 Kpkts/second
Shaping Rate=80 Kpkts/second

Fig. 3. TCP goodput with different shaping rate of ACK packets. Each
connection generates 64KB data.

new avenue of proactive ACK control. The key factor inspiring
the newly proposed ACK control approach is the viewpoint
that we can treat ACK not only as the acknowledgement
of received packets but also as the trigger for new packets.
This is because, as a self-clocking protocol [18], TCP relies
on the arrival of ACK packets to infer that the network can
accept more packets, thus maintaining continuous and stable
transmission to fully utilize link capacity.

As a matter of fact, the ACK control based solution naturally
meets our requirements. As the trigger of new TCP traffic,
we can leverage proactive ACK control to adjust the in-
flight traffic without suffering from the limitation of minimal
window size shared by the window-based solutions. In the
meantime, from the implementation perspective, in order to
enforce ACK control, we just need to properly regulate the
sending rhythm of ACKs, requiring no modification to existing
TCP/IP stack or switches. Thus, it is compatible to all TCP
implementations and is readily deployable.

Given such benefits, the next question is how to properly
hold and send back ACKs so that the ACK-triggered in-flight
traffic can fill up the pipeline without overfilling the shallow
switch buffer. The problem is that if we impose excessive delay
to ACKs, we can eliminate incast congestion collapse, but the
link utilization may be reduced. If we impose insufficient delay
to ACKs, the switch buffer may still be overfilled by the ACK-
triggered data, causing incast congestion collapse.

To demonstrate this conflict, we implemented a ACK shaper
with different rates and show the behaviors in Figure 3. A low
shaping rate (e.g., 40K packets per-second) can mitigate incast
while achieving low link utilization (no more than 70%). A
high shaping rate (e.g., 80K packets per-second) still suffers
from incast congestion. A moderate shaping rate (e.g., 60K
packets per-second) cannot eliminate incast congestion even
at the expense of wasting some bandwidth (nearly 200Mbps).

In the next section, we introduce how we solve this conflict
by proposing PAC.

III. DESIGN

In this section, we introduce our design for solving the TCP
incast congestion problem. First, in Section III-A, we introduce

Algorithm 1: The Main PAC Algorithm
Initialization:

1 threshold = buffer size;
2 in flight = 0;
3 ACKqueues = empty;

Main loop:
4 while true do
5 if packets received and ACK p generated then
6 update in flight;
7 update threshold;
8 ACKqueues.enqueue(p);
9 if !is empty(ACKqueues) then

10 q = ACKqueues.dequeue();
11 while in flight + q.trigger > threshold do
12 keep tracking received packets and updating

in flight and ACKqueues;
13 send back ACK q;
14 update in flight;

our PAC main algorithm to control in-flight traffic via properly
releasing ACK packets. In Section III-B, we analyze how to set
threshold for the in-flight traffic in order to achieve high link
utilization while eliminating incast collapse. Then, we discuss
how to estimate the in-flight traffic in networks in Section III-
C. Finally, we introduce how to schedule ACK packets among
multiple flows in Section III-D.

A. The Main PAC Algorithm

Following the discussion in Section II-D, we design Algo-
rithm 1 as the main procedure for our PAC algorithm. The key
idea is straightforward—it proactively controls ACK sending-
back rhythm to make sure the in-flight traffic does not exceed
the threshold, thus avoiding incast congestion collapse while
still maintaining high link utilization.

In the initialization (lines 1–3), we set the threshold to be
available switch buffer size, in-flight traffic volume to be 0, and
ACKqueues to be empty, as there is no traffic in the network
and no ACK at the receiver at the very beginning.

In the main loop, once PAC receiver receives new packets
from the network, it will update the in-flight traffic and
the threshold, then put the newly generated ACKs into the
ACKqueues (lines 5–8). When there is an outstanding ACK in
the ACKqueues to be sent back, we will first check whether
releasing this ACK will cause the in-flight traffic to exceed
the threshold. If so, PAC will hold it until there is enough
network space to absorb the potential traffic triggered by this
ACK before sending it back safely (lines 9–14).

We find that our PAC algorithm, though relatively simple,
achieves very good performance in both simulations and real
implementation. For example, PAC can sustain over 1000 con-
nections in our ns-2 simulations and achieve nearly 900Mbps
goodput in our testbed experiments. We believe there are
intrinsic reasons behind, and in what follows we delve into
these reasons by answering the following three questions.

1) How to set a proper threshold?
2) How to estimate the in-flight traffic?
3) How to schedule ACK packets at the receiver side?

B. How to set a proper threshold?

We rely on the threshold to modulate in-flight traffic. A
large threshold can lead to congestion, while a small one would
degrade link utilization.

To decide the threshold, we made the following key obser-
vations over production datacenter network characteristics.

• First, in the absence of queueing delay, normally the RTT
in production datacenter networks is 100us for intra-rack
and 250us for inter-rack [4].

• Second, to understand the RTT with queueing delay, we
made an analysis over a production datacenter with over
40,000 servers and found that 90% percentile of the RTT
is less than 400us.

• Third, it has been an emerging trend that production
datacenter networks, e.g., Windows Azure storage, offer
uniform high capacity between racks, and the over-
subscription ratio, typically less than 3:1, exists only
at the ToR switches [20]. Then, with ECMP [16] and
packet-level load balancing mechanisms [7, 12], it turns
out that the congestion usually occurs at the edge and the
core is free of persistent congestion [6, 20].

• Fourth, today’s commodity switches can have around
100KB buffer per port, for example, the Broadcom
Pronto-3295 switch in our testbed has about 4MB buffer
memory shared among 48 ports.

Based on the above observations, we set the threshold to be
the switch buffer size. The reason is three-fold.

• First, because the base intra-rack RTT can be near 100us
in a Gigabit network, the base BDP (Bandwidth Delay
Product) without queue is less than 100us × 1Gbps =
12.5KB, which is a very small pipe with limited capacity
to absorb in-flight traffic. Therefore, it is more likely that
the majority of the in-flight traffic can stay in the switch
buffer. Thus, setting the threshold as the switch buffer
size is a safe and conservative way in order to prevent
incast congestion collapse.

• Second, because the network core is less congested and
inter-rack RTT is around 250us, the base BDP is around
250us × 1Gbps = 31.25KB which is smaller than a
typical buffer size (e.g., 100KB). Therefore, by setting
the threshold as the switch buffer size, it is likely that we
can sustain high bottleneck link utilization.

• Third, even with some queueing delay due to congestion,
most of the RTT (90%) is still less than 400us and the
BDP is around 400us×1Gbps = 50KB, which is almost
a half of the buffer size, indicating that it is still possible
to fill up the bottleneck link with such a threshold.

Our evaluation results in Section V confirm that the above
threshold setting works well in practice. Based on this we
can achieve high throughput without causing incast collapse
even with some congestion at the network core. However,

we anticipate that, in case the network core experiences a
high degree of persistent congestion (which is rare), such
a threshold might be aggressive, possibly leading to incast
collapse which can degrade the performance. To address this,
we leverage ECN to estimate the congestion situation and
let the threshold react to such a condition. Specifically, we
compute the fraction of ECN marked incoming packets as α,
while α indicates the level of congestion. Inspired by [4], we
adjust the threshold as follows:

threshold←

{
threshold× (1− α/2) α > 0

min{threshold× 2, buffer size} α = 0
(2)

When α > 0, we reduce the threshold in proportion to the
level of congestion. When α = 0, it means that the network is
free of congestion and we increase the threshold exponentially
to the buffer size value in order to quickly fill up the pipeline.
The experiment results show that this scheme can effectively
deal with the incast happening at the network core.

C. How to estimate in-flight traffic?

To estimate the in-flight traffic, we consider three aspects:
1. when releasing an ACK packet, we should increase the in-
flight traffic; 2. when receiving an incoming packet, we should
reduce the in-flight traffic; 3. We must be able to detect the
possible mis-estimation occurring in the first two steps and
correct the deviation.

Update in-flight when releasing an ACK packet: When
PAC sends an ACK packet back to the network, new TCP
traffic is supposed to be generated, thus in-flight traffic should
be increased correspondingly (lines 13–14). However, the
problem is how to estimate the volume of in-flight traffic
triggered by an ACK packet? Assuming the ACK packet
PAC wants to release is q, the latest released ACK packet
of the same flow is prev, and their acknowledgement numbers
are ACKq and ACKprev respectively. Based on the window
sliding and cumulative acknowledgement mechanism of TCP,
taking TCP Reno [18] as an example, the traffic (i.e., appli-
cation payload) triggered by q is given by:

q.trigger = ACKq −ACKprev + Increment

=

 ACKq −ACKprev +MSS SS

ACKq −ACKprev +
MSS ×MSS

Window
CA

(3)
where Increment is the variation of the TCP congestion
window, SS stands for slow start and CA congestion avoidance.

However, we note that, when ECN is enabled, Increment
can be negative for an ACK packet marked with the ECE-
Echo flag. In this case, we just conservatively set q.trigger =
ACKq − ACKprev . We later show that PAC can correct the
derivation of estimation noise. Based on the above derivation,
when we send back q, we should update the volume of in-flight
traffic (line 14) as follows:

in flight = in flight+ q.trigger (4)

Update in-flight when receiving an incoming packet: This
case is easy. When the receiver receives an incoming packet
with length L, we simply reduce the volume of in-flight traffic
correspondingly:

in flight = in flight− L (5)

Deviation Correction: The above estimation of the in-
flight traffic might not always be accurate and can introduce
deviations. Even though datacenters are under a single ad-
ministrate control and we know the TCP congestion control
algorithm (e.g., Reno [18] or CUBIC [14]) that end hosts use,
the Increment in equation (3) is still difficult to yield. This
is because: 1) we have little or no knowledge of the TCP
phase, slow start or congestion avoidance, of this flow; 2) it
is possible that the last few ACKs may not trigger any data
due to the end of the TCP connection; 3) The ECN or flow
control may reduce the sending window. All above these may
lead to over-estimation of the in-flight traffic, thus decreasing
the throughput.

To address to problem, we leverage per-flow information to
infer the TCP phase of a flow. For flow i, its per-flow control
interval is RTTi. We measure the incoming throughput of
the flow i in the N -th interval as BW i

N . If we observe that
BW i

N ≤ BW i
N−1 × λ holds for two consecutive intervals,

where λ is 0.8 in our implementation, we infer that the
congestion window increasing pace slows down and flow i
has transformed from slow start into congestion avoidance.
In addition, if any incoming packet of flow i is marked with
ECN, it also indicates that flow i has come into the congestion
avoidance phase [26].

The above per-flow stage inference cannot directly correct
the deviation of the previous over-estimation of the in-flight
traffic. To this end, we treat the reduction of aggregate incom-
ing throughput as the signal to adjust the in-flight traffic. When
a receiver senses a suspicious throughput reduction (without
ECN), it decreases the in-flight value. Specifically, we use the
average RTT of all TCP connections as the control interval. In
one control interval, we measure its actual incoming through-
put as BWT and maintain a smooth bandwidth BWS and in-
flight traffic in flightS using the exponential filter. When we
observe that BWT ≤ BWS × λ, it indicates a suspicious link
utilization reduction, owing to the reasons discussed above.
Therefore, we adjust the in-flight traffic to correct the deviation
as follows:

in flight = min{in flight, in flightS ×BWT

BWS × (1− α/2)
} (6)

where α is the fraction of the ECN marked incoming packets.
When α is small, in flightS×BWT

BWS×(1−α/2) ≈ in flightS×BWT

BWS
and

we adjust in-flight traffic mainly based on the reduction of
incoming throughput. When α is large, it indicates a high
level of congestion and BWT

BWS×(1−α/2) can be even larger than
1. In such a case, we cannot conclude whether the throughput
reduction is due to an over-estimation or core congestion, thus
we keep the current in-flight value. Experiments show that
the above heuristic is effective in correcting the deviation and
maintains a high throughput.

D. How to schedule ACK packets?
Throughput-sensitive large flows, latency-sensitive short

flows and bursty incast flows coexist in current datacenters.
The goal of ACK scheduling at the receiver size is to prioritize
the short/bursty flows while not imposing excessive delay on
any of them. As a practical incremental deployable transport-
layer solution, PAC should not make any assumptions about
the flow size information as opposed to prior works [6, 15, 28,
30], and should be self-adaptive without a priori knowledge
of flow size.

To this end, we adopt the Multi-level Feedback Queue
(MLFQ) [10, 27] to implement our ACK scheduling at the
receiver side. To enforce MLFQ, PAC introduces N distinct
queues to store ACK packets, which are assigned with N
different priority levels. The ACK packets in different priority
queues are scheduled strictly based on their priorities strictly
(from high to low). For the ACK packets in the same priority
queue, PAC performs per-flow Round Robin (RR) to schedule
them. The ACK packets of a newly generated flow is initially
put in the highest priority queue. Then, with the increase
in flow size, its priority is reduced gradually and its ACK
packets will be moved from higher level queues to lower
level queues step by step. In this way, short flows would
likely to be completed in the first few high priority queues,
while long flows would eventually sink to the lowest priority
queues, giving preference to the short ones. Therefore, the
latency-sensitive short flows will receive prioritized services
and experience relatively less delay.

Another concern of PAC is its interaction with TCP. In
datacenters, RTOmin is usually set to be a relatively low value
(e.g., 10 microseconds [4]) compared to the Internet. As RTT,
especially for those low-priority large flows, can be increased
due to the PAC’s ACK scheduling, it is not sure whether this
will cause RTT to be prolonged beyond RTOmin, thus leading
to TCP timeouts and spurious retransmissions. For this reason,
we specifically measure the RTTs in our testbed experiments,
and we find that our ACK control does not adversely prolong
the RTTs (for example, with 100 connections, the 99th per-
centile RTT is only 3.6ms) and we do not observe any spurious
retransmission.

Even though this phenomenon is rare, we still take into
account the possibility and design counter-measures. Suppose
PAC observes the arrival of a stale ACK that are being queued
in the ACK queue (which may be caused by TCP timeout
and retransmission), it drops all the out-of-order ACK packets
of this flow, moves the remaining in-order ACK packets to
the highest priority queue, and marks this flow as slow start.
The reason is that, by dropping the the out-of-order ACKs,
PAC avoids disturbing the TCP at the sender. In addition, by
increasing the priority, PAC reduces the delay and RTT so that
the following unnecessary retransmissions can be mitigated.

IV. EXPERIMENTAL SETUP

A. Implementation
As a prototype, we have implemented PAC both as a NDIS

(Network Driver Interface Specification) filter driver for the

����������	

����������

�������	���������

����������

��������������

����

������

� ��

!��	��

��"������

#	$���� %�$����

��	�

��	�&�
���������	����

Fig. 4. Software stack of PAC implementation in Linux.

Windows platform and as a kernel module for the Linux
platform. In a non-virtualized environment, PAC works as a
shim layer above the NIC driver. This does not touch any
TCP/IP implementation of OS, making it readily deployable
in production datacenters. In a virtualized environment, PAC
resides in hypervisor (or Dom 0), well supporting virtual
machines in cloud datacenters [31]. In what follows, we
introduce our Linux implementation which is used for all of
the experiments in this paper.

As shown in Figure 4, PAC kernel module is located
between the TCP/IP stack and the Linux Traffic Control (TC)
module. PAC implementation consists of three key compo-
nents: Netfilter hook, Multi-level Feedback Queues (MLFQ)
and Scheduler. We insert Netfilter [2] hooks in PRE ROUTING
and POST ROUTING to intercept all incoming and out-
going TCP packets. Outgoing TCP ACK packets are en-
queued into MLFQ. Each TCP flow, identified by an 4-tuple:
source/destination IP addresses and source/destination port
numbers, maintains its own flow state. For a TCP flow, when
its FIN/RST packets are observed or none of this flow are
captured for five minutes, its flow state will be removed. The
scheduler chooses ACK packets from MLFQ and sends them
back to network based on the PAC algorithm.

The operations of the the PAC kernel module are as follows:
1) When an outgoing ACK packet is captured the by Netfilter
hook, it will be directed to MLFQ. 2) The scheduler is
responsible to dequeue an ACK packet from MLFQ and decide
when to release it based on Algorithm 1. If the in-flight traffic
does not exceed the threshold, this ACK packet will be sent
immediately and the information in the scheduler will be
updated (e.g., in-flight traffic). Otherwise, the scheduler just
holds this packet and keeps tracking incoming packets until
it is safe to release it. 3) When incoming traffic is observed
by the Netfilter hook, the information of the scheduler is also
updated correspondingly as we discuss in Section III-C.

CPU Overhead: We measured the CPU overhead intro-
duced by our PAC kernel module. We installed PAC kernel
module on a Dell server PowerEdge R320 with a Intel E5-
1410 2.8GHz CPU and 8GB memory. We enabled ECN
in switches and used TCP New Reno with DCTCP as our
congestion control algorithm. We started 10 concurrent long
TCP connections and achieved more than 900Mbps throughput

in total. The extra overhead introduced by PAC is around
1%-1.6% compared with the case PAC kernel module is not
deployed.

Buffering Pressure: Since PAC holds ACKs at the receiver,
we measured packet buffering overheads introduced by PAC.
We constructed an incast congestion scenario with 100 con-
nections where each connection generated 64KB data. We run
this 10 times and obtained the maximum ACK packets queuing
length for each time. The average value is 223. Considering
the length of an ACK packet is just 66 bytes (Ethernet Header
14 + IP Header 20 + TCP Header 20 + TCP Options 12 =
66), the queueing space required by PAC is very small; only
tens of KBs.

Get Fine-Grained RTT: As section III shows, PAC requires
RTT for control interval calculation. At the sender side, live
RTT can be easily obtained by the time elapsed between when
a data packet was sent and the ACK for that data packet
arrived. At the receiver side where PAC is deployed, if the
traffic between the sender and receiver is bidirectional, we
can also use the above solution to get RTT. Considering data
traffic in the reverse direction may not be enough, we need
generic and robust solutions to obtain RTT.

In our implementation, we use two methods to obtain
reverse RTT at the receiver side: 1) Using the TCP timestamp
option [19] 2) Using initial RTT measured in connection
establishment (base RTT) plus extra delay added by PAC.
The TCP timestamp is enabled by default in our Linux 2.6
kernel. However, the current timestamp value (TSval) in the
TCP timestamp option is in millisecond granularity. Similar
to ICTCP [31], we modify timestamp values to microsecond-
granularity time. Note that this modification is only done by
PAC at the receiver side and we do not touch the TCP stack on
end host as [29]. Apart from a fine-grained TCP timestamp,
we can estimate RTT as the sum of the initial RTT sampled in
the connection establishment and extra delay added by PAC.
Though not very accurate, this coarse-grained estimation also
works well in practice. By default, we use the second coarse-
grained method to minimize overhead and found it achieves
good performance.

B. Testbed

Our testbed consists of 38 Dell servers and two Pronto 3295
48-port Gigabit Ethernet switches with 4MB shared memory.
Our topologies are shown in Figure 5 and Figure 6. In Figure
5, all the servers are connected to a 48-port Gigabit Ethernet
switch and incast congestion happens at the last hop. In Figure
6, incast congestion happens in the intermediate link (network
core). Each server has a four-core Intel E5-1410 2.8GHz CPU,
8G memory, 500GB hard disk and one Broadcom BCM5719
NetXtreme Gigabit Ethernet NIC. The OS of each server is
Debian 6.0 64-bit version with Linux 2.6.38.3 kernel. The
servers have their own background TCP traffic for various
services (e.g., SSH) but the amount is small compared to our
incast traffic. The base RTT in our testbed is around 100us. We
allocate a static buffer size of 100 packets (100 × 1.5KB =
150KB) to the port with congestion. In our experiments, each

���������

����������

����������
����������

����������

���������������������	�
���	
Fig. 5. The topology of incast at network edge, in our experiments each
sender can setup multiple connections emulating more senders.

����������

����������
����������

����������

����������

���������� �����������	�
���	 ��������� ���������	
�������
Fig. 6. The topology of incast in network core, in our experiments each
sender can setup multiple connections emulating more senders.

sender can generate multiple connections (e.g., 3) to emulate
multiple senders to send data to the receiver.

We use TCP New Reno [18] as our congestion control
algorithm and disable the delayed ACK. Advanced offload
mechanisms (e.g., Large Segmentation Offload) are enabled
by default. For DCTCP implementation, we use public code
from [1] and add ECN capability to SYN packets [21]. We
implement ICTCP as a Linux kernel module following the
description in [31]. The default RTOmin on Linux is 200
milliseconds. V. EVALUATION

The goals of the evaluation are to: 1) show that PAC can
support many more connections than window-based solutions
and maintain high link utilization, 2) show that PAC can
mitigate incast congestion in the network core, 3) quantify
PAC’s impact on latency, and 4) explore PAC’s performance
in non-incast scenarios.

Summary of main results is as follows:
1) For typical edge incast, PAC can easily handle 100

connections while achieving around 900Mbps goodput
in our small-scale testbed experiments, and furthermore,
it supports over 1600 connections (40X that of ICTCP
and DCTCP) while achieving over 800Mbps goodput in
our large-scale ns-2 simulations.

2) In the presence of network core congestion, PAC can
support over 100 concurrent connections while maintain-
ing over 700Mbps goodput in our testbed experiments.
However, DCTCP starts to degrade when the number of
connections exceeds 24.

3) PAC imposes little influence on latency: in our exper-
iments with 100 concurrent connections, the measured
50th percentile RTT is 1.3ms and the 99th percentile is
3.6ms, which will not incur spurious timeout even the
RTOmin is as 10ms in production datacenters.

4) For non-incast cases, PAC demonstrates good fairness
on multiple connections and achieves high throughput
for long-term TCP traffic.

Parameters: Table I gives the parameters used in the
testbed experiments. We set the ECN marking threshold in
the switch to be 10 packets (15KB) because the base RTT in
our testbed is around 100us (BaseBDP = 100us × 1G =
12.5KB < 15KB). While we allocated a 150KB fixed buffer
to switch incast port, we intentionally set the initial threshold
for the PAC algorithm to be 80KB which is the average buffer
size for a port (4MB/48). This is because PAC should not
make any assumptions about buffer management in switches
and it should also be adaptive. We implement a two-level
MLFQ and use 20KB as the single threshold.

PAC ECN Marking Thresh.=10 packets
Initial threshold=80 KB, λ=0.8
2 priorities, Flow Size Thresh.=20KB

DCTCP ECN Marking Thresh.=10packets, g=0.0625
ICTCP Minimal Window= 2MSS, γ1=0.1, γ2=0.5

TABLE I
PARAMETER SETTINGS

Benchmark Traffic: We write a simple client-server ap-
plication to construct incast congestion. We use two types of
traffic benchmarks used by previous works [4, 9, 25, 29].

• Fixed volume per sender: In this scenario, we fix the
traffic amount generated by each connection and the
total amount of traffic is increased with the number of
connections. [9, 25]

• Fixed volume in total: In this scenario, we fix the total
traffic amount shared by all connections and the number
of connections varies. The more connections, the lower
volume per connection. [4, 29]

The TCP connections are barrier-synchronized per round and
our result is the average value of 20 rounds.

A. Incast Congestion at Network Edge

We use the topology in Figure 5 to reproduce incast
congestion at network edges. Figure 7 shows the goodput
of PAC, ICTCP, and DCTCP. In general, PAC can easily
handle 100 concurrent connections without seeing any trend in
performance degradation, while ICTCP and DCTCP begin to
downgrade when the numbers of connections exceed 48 and
36 respectively.

When the number of connections is small, DCTCP shows
little advantage than PAC in throughput (tens of Mbps). For
example, PAC achieves 807 Mbps while DCTCP achieves 829
Mbps with 10 connections at 32KB per server. We attribute
this to PAC’s conservative parameter settings and estima-
tion deviation. However, PAC can continue to achieve near
900Mbps goodput with an increasing number of connections,
while the other two suffer incast collapse. We also observe that
ICTCP can support more connections than DCTCP. That is
because, 1) DCTCP relies on ECN to detect congestion, thus
requiring a larger buffer to avoid congestion during control

0 8 16 24 32 40 48 56 64 72 80 88 96
0

200

400

600

800

1000

Number of concurrent connections

T
C

P
 g

oo
dp

ut
 (

M
bp

s)

PAC 32KB
PAC 64KB
DCTCP 32KB
DCTCP 64KB
ICTCP 32KB
ICTCP 64KB

(a) Fixed volume per sender

0 8 16 24 32 40 48 56 64 72 80 88 96
0

200

400

600

800

1000

Number of concurrent connections

T
C

P
 g

oo
dp

ut
 (

M
bp

s)

PAC total 3MB
PAC total 6MB
DCTCP total 3MB
DCTCP total 6MB
ICTCP total 3MB
ICTCP total 6MB

(b) Fixed volume in total

Fig. 7. The goodput of PAC, DCTCP, and ICTCP in network edge incast
congestion.

0 8 16 24 32 40 48 56 64 72 80 88 96
0

0.2

0.4

0.6

0.8

1

Number of concurrent connections

R
at

io
 o

f T
C

P
 ti

m
eo

ut

PAC 32KB
PAC 64KB
DCTCP 32KB
DCTCP 64KB
ICTCP 32KB
ICTCP 64KB

(a) Fixed volume per sender

0 8 16 24 32 40 48 56 64 72 80 88 96
0

0.2

0.4

0.6

0.8

1

Number of concurrent connections

R
at

io
 o

f T
C

P
 ti

m
eo

ut

PAC total 3MB
PAC total 6MB
DCTCP total 3MB
DCTCP total 6MB
ICTCP total 3MB
ICTCP total 6MB

(b) Fixed volume in total

Fig. 8. The timeout ratio in network edge incast congestion.

latency; 2) The default initial congestion window in Linux is
3MSS, larger than the minimal window of ICTCP which is
2MSS.

To evaluate the effectiveness of PAC, we also measure
the TCP timeout events in our experiments. We compute the
timeout ratio as among the total 20 rounds for each experiment,
how many rounds we see at least one TCP timeout event. The
results are shown in Figure 8. We observe that the timeout
ratio of PAC remains at 0 with the increasing number of
connections.

We further explore the reasons behind our results. As
we have analyzed in section II-B, the maximum number of
connections supported by DCTCP and ICTCP is given by:

Nmax = (B + C ×RTT)/Windowmin (7)

In our testbed, the switch buffer size B is around 150KB
and C × RTT is smaller than 12.5KB (100us × 1Gbps =
12.5KB). The Windowmin for ICTCP and DCTCP are 3KB
(2× 1.5KB) and 4.5KB (3× 1.5KB) respectively. In theory,
ICTCP and DCTCP can handle around 54 and 36 connections
at most in our experiment setup. Our experiments confirm
these theoretical values, and the little deviation is mainly due
to the servers’ own background traffic. For PAC, since we
increase RTT by delaying ACK packets at the receiver side,
we can decouple the maximum number of connections from
switch buffer size, thus supporting many more connections.

B. Incast Congestion in Network Core

We use the topology in Figure 6 to reproduce incast con-
gestion in the network core. We generate a long-term TCP

0 8 16 24 32 40 48 56 64 72 80 88 96
0

200

400

600

800

1000

Number of concurrent connections

T
C

P
 g

oo
dp

ut
 (

M
bp

s)

PAC 32KB
PAC 64KB
DCTCP 32KB
DCTCP 64KB

(a) Fixed volume per sender

0 8 16 24 32 40 48 56 64 72 80 88 96
0

200

400

600

800

1000

Number of concurrent connections

T
C

P
 g

oo
dp

ut
 (

M
bp

s)

PAC total 3MB
PAC total 6MB
DCTCP total 3MB
DCTCP total 6MB

(b) Fixed volume in total

Fig. 9. The goodput of PAC and DCTCP in network core incast congestion.

0 8 16 24 32 40 48 56 64 72 80 88 96
0

0.2

0.4

0.6

0.8

1

Number of concurrent connections

R
at

io
 o

f T
C

P
 ti

m
eo

ut

PAC 32KB
PAC 64KB
DCTCP 32KB
DCTCP 64KB

(a) Fixed volume per sender

0 8 16 24 32 40 48 56 64 72 80 88 96
0

0.2

0.4

0.6

0.8

1

Number of concurrent connections

R
at

io
 o

f T
C

P
 ti

m
eo

ut

PAC total 3MB
PAC total 6MB
DCTCP total 3MB
DCTCP total 6MB

(b) Fixed volume in total

Fig. 10. The timeout ratio in network core incast congestion.

connection as background traffic which occupies 750Mbps
bandwidth before the incast traffic starts. In this scenario,
because the intermediate link is the bottleneck and ICTCP
does not work (it was designed for edge incast [31]), we only
compare PAC with DCTCP. The goodput of PAC and DCTCP
is shown in Figure 9. Due to the influence of the background
traffic, the goodput of both PAC and DCTCP is decreased
compared with edge congestion; almost 500-700Mbps when
the number of connections is within 20. Unlike DCTCP,
PAC achieves better goodput as the number of connections
increases, finally reaching over 700Mbps goodput with 100
connections.

Figure 10 shows the TCP timeout ratio in network core
incast congestion. Even under the pressure of background
traffic, PAC still maintains zero timeout. We attribute this to
PAC’s robust adjustment mechanism, which adapts to various
situations in the network core. In contrast, DCTCP suffers
from more severe timeout in core congestion than that at the
edge congestion. For example, DCTCP begins to experience
timeout when the number of connections reaches 20 in core
congestion and 36 at edge congestion. This is because incast
flows see a smaller available buffer size at the core due
to the pressure of background traffic. As we have analyzed
before, the window-based solutions are sensitive to available
switch buffer size. Smaller available buffer size leads to worse
performance.

C. Impact on Latency

PAC avoids incast congestion by proactively intercepting
and controlling ACKs at the receiver, which might increase the

0 8 16 24 32 40 48 56 64 72 80 88 96
0

2000

4000

6000

8000

10000

Number of concurrent connections

50
%

 R
T

T
 (

us
)

PAC 32KB
PAC 64KB
PAC total 3MB
PAC total 6MB

(a) The 50th percentile

0 8 16 24 32 40 48 56 64 72 80 88 96
0

2000

4000

6000

8000

10000

Number of concurrent connections

99
%

 R
T

T
 (

us
)

PAC 32KB
PAC 64KB
PAC total 3MB
PAC total 6MB

(b) The 99th percentile

Fig. 11. The 50th percentile and 99th percentile RTTs of PAC in our testbed
experiments.

RTT of TCP connection. To measure how much influence PAC
can impose on the RTT, we used the microsecond-granularity
TCP timestamp to measure RTT at the receiver side. Figure 11
shows the results of the 50th percentile RTT and the 99th
percentile RTT respectively.

We find that PAC delivers little impact on RTT. For
example, when there are 100 concurrent connections, half
of the RTTs are less than 1.3ms, while 99% of them are
less than 3.6ms. Currently, many production datacenters have
reduced RTOmin to a low value (e.g., 10ms [4]). In Linux,
the lowest possible RTO value is 5 jiffies (5ms) [29]. This
suggests that PAC can work smoothly and will not result in
issues like spurious timeouts and retransmissions in production
datacenters with low RTOmin.

To analyze the PAC’s influence on RTT, we assume there are
N synchronized TCP incast connections with identical win-
dow W and RTT , sharing a bottleneck link with capacity C.
To avoid incast congestion, the aggregate incoming throughput
should be no larger than link capacity:

C ≥ N ×W
RTT

(8)

Therefore, to avoid incast collapse, RTT should satisfy the
following requirement:

RTT ≥ W ×N
C

(9)

As we see from above formula, RTT is closely related to both
the window and the number of connections. Considering ECN
is enabled, W should be close to minimal congestion window
which is 3 MSS in Linux. With 100 connections, RTT should
be enlarged to 3× 1.5KB × 100/1Gbps ≈ 3.6ms, matching
our measurement results.

D. Long-Term Performance

To evaluate the performance of PAC in non-incast scenarios,
we generate 4 TCP flows from 4 servers to the same receiver
under the same switch. These 4 flows are gradually added at
time 1, 10, 20 30, and then removed at time 40, 50, 60, 70.
We depict the throughput dynamics in Figure 12. We find that
with the addition and removal of flows, the active flows can
always quickly and fairly share the network bandwidth, and
their aggregate throughput is more than 900Mbps, close to

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

900

1000

Time (seconds)

T
C

P
 g

oo
dp

ut
 (

M
bp

s)

flow 1
flow 2
flow 3
flow 4

Fig. 12. The goodput of 4 PAC flows from 4 servers to the same receiver
under the same switch, these 4 flows are gradually added and then removed
every 10 seconds.

link capacity. PAC achieves good fairness because we used
the Round Robin to schedule ACK packets among the flows
in the same priority level of our MLFQ, and it maintains high
link utilization because we used an appropriate threshold to
regulate the in-flight traffic.

E. Large-Scale Simulation

Due to the size and hardware limitations of our testbed, we
cannot test PAC’s performance in 10G network. Moreover,
we also want to explore the maximum number of connections
PAC can handle. Therefore, we complement our testbed ex-
periments with large-scale ns-2 simulations. Our simulations
have three parts: 1) we evaluate PAC in 1G network to
confirm with our textbed experiments; 2) we evaluate PAC
in 10G network; and 3) we explore the maximum number of
concurrent connections PAC can support simultaneously.

Simulation topology: We simulate a topology similar to
Figure 5. All the servers are connected under the same ToR
switch. The only difference is that we have infinite senders and
each sender has one connection with the receiver. To simulate
the system overhead, we add random delay to the RTT.

Parameters 1G Network 10G Network
MSS 1460 Bytes 1460 Bytes
Switch 96KB 375KB
Base RTT 120us 80us
TCP NewReno NewReno
RTOmin 200ms 200ms
PAC Initial threshold=96KB Initial threshold=375KB

K=10pkts K=65pkts
α=0.8 α=0.8

ICTCP Minimal window=2MSS Minimal window=2MSS
γ1=0.1 γ1=0.1
γ2=0.15 γ2=0.15

DCTCP Initial window=2MSS Initial window=2MSS
K=10pkts K=65pkts
g=0.0625 g=0.0625

TABLE II
SIMULATION SETTINGS

Simulation settings: Our simulations are performed in both
1G network and 10G network. We summarize our parameters
in Table II. For PAC, we set the threshold to be equal to
the switch buffer size, 96KB and 375KB for 1G network and
10G network respectively. For DCTCP, we set the marking

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

900

1000

Number of concurrent senders

T
C

P
 g

oo
dp

ut
 (

M
bp

s)

PAC 64KB
PAC 128KB
PAC 256KB
DCTCP 64KB
DCTCP 128KB
DCTCP 256KB
ICTCP 64KB
ICTCP 128KB
ICTCP 256KB

Fig. 13. The goodput of PAC, DCTCP and ICTCP in 1G network.

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of concurrent senders

T
C

P
 g

oo
dp

ut
 (

M
bp

s)

PAC 64KB
PAC 128KB
PAC 256KB
DCTCP 64KB
DCTCP 128KB
DCTCP 256KB
ICTCP 64KB
ICTCP 128KB
ICTCP 256KB

Fig. 14. The goodput of PAC, DCTCP and ICTCP in 10G network.

threshold of DCTCP roughly as the base BDP, 10 packets for
1G network and 65 packets for 10G network. For ICTCP, we
determine the best settings for its parameters according to the
simulations. We use NewReno as our TCP implementation and
disable delayed ACK. The RTOmin is 200ms.

Workload: We also use two types of workloads as in
testbed: fixed volume per server and fixed volume in total.
We use the first type when we compare the performance of
PAC with DCTCP and ICTCP. We use the second one when
we explore the maximum number of concurrent connections
PAC can handle.

1) 1G Network: The goodput of PAC, DCTCP and ICTCP
in 1G network is shown in Figure 13. From the figure,
we find that by setting a proper threshold to modulate the
ACK sending-back rate, PAC avoids incast congestion collapse
while still achieving high link utilization. On the contrary,
ICTCP and DCTCP achieve high throughput at the beginning,
but eventually downgrade when the number of senders be-
comes larger, around 40 in our results.

We also find that the number of connections that DCTCP
and ICTCP can handle is smaller that those of our testbed
experiments. This is because we have reduced switch buffer
size from 150KB to 96KB. This verifies that the window-
based solutions are sensitive to switch buffer management as
we analyzed in Section II-B.

2) 10G Network: Figure 14 shows the goodput of PAC,
DCTCP and ICTCP in 10G network. Given that both the base

32 64 128 256 512 1024 2048
0

100

200

300

400

500

600

700

800

900

1000

Number of concurrent senders

T
C

P
 g

oo
dp

ut
 (

M
bp

s)

PAC total 9MB
PAC total 8MB
PAC total 7MB
PAC total 6MB

Fig. 15. The maximum number of connections PAC can support.

BDP and switch buffer size become larger in 10G network and
the minimal window remains the same, DCTCP and ICTCP
can generally handle more concurrent connections than they
do in 1G network, but finally experience packet losses and
thus incast collapse when the number of senders exceeds 130
and 150, respectively. In contrast, PAC can still avoid incast
collapse and maintain high throughput with an increasing
number of connections.

3) The Maximum Number of Connections: To explore the
maximum number of connections that PAC can handle, we fix
the total traffic volume and gradually increase the number of
senders. We use 1G network environment for this experiment.
The result is shown in Figure 15.

From the figure, we find that PAC can easily support more
than 1000 concurrent connections and sustain over 800Mbps
throughput when facing 1600 senders. It begins to experience
packet losses and TCP timeouts when the number of connec-
tions reaches 2048.

When we update the in-flight traffic, we do not take into
account the control messages of connection establishment.
Compared with the size of MSS, the size of the SYN packets,
which is just tens of bytes, can be ignored. However, when the
number of senders is significantly large, these control signals
can be a threat. Suppose there are 2000 senders and each sends
a SYN packet of 66 bytes, the total amount of traffic is more
than 132KB. When these SYN packets come synchronously,
they will overfill the switch buffer and PAC fails to work.

VI. RELATED WORKS

The most related works to PAC include DCTCP [4],
ICTCP [31], Tuing ECN [32], GIP [34], reducing-
RTOmin [29] and CP [24]. As we have discussed previously,
window-based solutions [4, 31, 32] only support quite a
limited number of senders while recovery-based solution-
s [24, 29, 34] are not incrementally deployable. We have done
extensive experiments and simulations to compare with them.
Apart from the above works, there have also recently been
some other datacenter transport designs, though their main
design goals are not mitigating incast congestion.

HULL [5] tries to keep the switch buffer empty to achieve
ultra-low latency. HULL uses phantom queue to simulate a

network at less than 100% utilization and relies on ECN
to deliver congestion information. Moreover, HULL deploys
hardware packet pacer on end hosts to throttle bursty traffic.

D2TCP [28] adds deadline-awareness on the top of DCTCP.
It adjusts the congestion window based on both the congestion
situation and deadline information to meet deadlines.

MCP [8] establishes a theoretical foundation on how to
achieve a minimal-delay deadline-guaranteed datacenter trans-
port layer protocol, and then it leverages ECN and commodity
switches to implement and approximate this optimal solution.

D3 [30] achieves explicit rate control based on deadline
information to guarantee deadlines. It maintains the state
for each flow in switches, which requires hardware changes.
Moreover, its first-come-first-served nature may lead to sub-
optimal scheduling.

PDQ [15] uses preemptive flow scheduling to approximate
ideal SRPT (shortest remaining processing time) scheduling,
thus minimizing average flow completion time. Like D3, its
flow scheduling is also based on explicit rate control assigned
by switches. Therefore, it requires non-trivial switch and end
host modifications, making it hard to implement in practice.

Similar to PDQ [15], pFabric [6] also tries to approximate
optimal flow scheduling. Instead of using explicit rate control
as [15, 30], it decouples flow scheduling from rate control and
achieves near-optimal flow completion times.

VII. CONCLUSION

In this paper, we have designed, implemented, and eval-
uated PAC, a simple yet very effective design to tame TCP
incast congestion via Proactive ACK Control. The key design
principle behind PAC is that we treat ACK not only as the
acknowledgement of received packets but also as the trigger
for new packets. Leveraging practical datacenter network
characteristics, PAC enforces a novel ACK control mechanism
to release ACKs in such a way that the ACK-triggered in-flight
traffic can fully utilize the bottleneck link without running
into incast congestion collapse even when faced with over a
thousand senders. Our extensive experiments and simulations
show that PAC significantly outperforms the existing window-
based solutions. Our implementation experiences show that
PAC requires minimal system modification, making it readily
deployable in production datacenters.

Acknowledgements This work is supported by HKRGC
under ECS 26200014, and National Basic Research Pro-
gram of China (973) under Grant No.2014CB340303 and
2013CB329103, and the Fundamental Research Funds for the
Central Universities.

REFERENCES

[1] “DCTCP Patch,” http://simula.stanford.edu/∼alizade/Site/DCTCP.html.
[2] “Linux netfilter,” http://www.netfilter.org.
[3] “The Network Simulator NS-2,” http://www.isi.edu/nsnam/ns/.
[4] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-

hakar, S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),” in
SIGCOMM 2010.

[5] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda, “Less is more: trading a little bandwidth for ultra-low latency
in the data center,” in NSDI 2012.

[6] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pfabric: Minimal near-optimal datacenter transport,” in
SIGCOMM 2013.

[7] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng, H. Wu,
Y. Xiong, and D. Maltz, “Per-packet load-balanced, low-latency routing
for clos-based data center networks,” in CoNEXT 2013.

[8] L. Chen, S. Hu, K. Chen, H. Wu, and D. Tsang, “Towards Minimal-
Delay Deadline-Driven Data Center TCP,” in HotNets 2013.

[9] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, “Understand-
ing TCP incast throughput collapse in datacenter networks,” in WREN
2009.

[10] F. J. Corbató, M. Merwin-Daggett, and R. C. Daley, “An experimental
time-sharing system,” in Proceedings of the May 1-3, 1962, spring joint
computer conference, pp. 335–344.

[11] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, pp. 107–113, 2008.

[12] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On the impact of
packet spraying in data center networks,” in INFOCOM 2013.

[13] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a scalable and flexible
data center network,” in SIGCOMM 2009.

[14] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Operating Systems Review, 2008.

[15] C.-Y. Hong, M. Caesar, and P. Godfrey, “Finishing flows quickly with
preemptive scheduling,” in SIGCOMM 2012.

[16] C. Hopps, “RFC 2992: Analysis of an Equal-Cost Multi-Path Algorith-
m,” 2000.

[17] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: dis-
tributed data-parallel programs from sequential building blocks,” ACM
SIGOPS Operating Systems Review, pp. 59–72, 2007.

[18] V. Jacobson, “Congestion avoidance and control,” in SIGCOMM 1988.
[19] V. Jacobson, R. Braden, and D. Borman, “RFC 1323: TCP extensions

for high performance,” 1992.
[20] V. Jeyakumar, M. Alizadeh, D. Mazieres, B. Prabhakar, C. Kim, and

A. Greenberg, “EyeQ: practical network performance isolation at the
edge,” in NSDI 2013.

[21] A. Kuzmanovic, A. Mondal, S. Floyd, and K. Ramakrishnan, “Adding
Explicit Congestion Notification (ECN) Capability to TCP’s SYN/ACK
Packets,” draft-ietf-tcpm-ecnsyn-03 (work in progress), 2007.

[22] D. Nagle, D. Serenyi, and A. Matthews, “The Panasas ActiveScale
Storage Cluster: Delivering Scalable High Bandwidth Storage,” in Su-
percomputing 2004.

[23] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani, “Scaling Memcache at Facebook,” in NSDI 2013.

[24] R. S. C. L. Peng Cheng, Fengyuan Ren, “Catch the Whole Lot in an
Action: Rapid Precise Packet Loss Notification in Data Centers,” in
NSDI 2014.

[25] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R. Ganger,
G. A. Gibson, and S. Seshan, “Measurement and analysis of TCP
throughput collapse in cluster-based storage systems,” in FAST 2008.

[26] K. Ramakrishnan, S. Floyd, D. Black et al., “RFC 3168: The addition
of explicit congestion notification (ECN) to IP,” 2001.

[27] A. Silberschatz, P. B. Galvin, G. Gagne, and A. Silberschatz, Operating
system concepts, 1998.

[28] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter
tcp (d2tcp),” in SIGCOMM 2012.

[29] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen,
G. R. Ganger, G. A. Gibson, and B. Mueller, “Safe and effective
fine-grained TCP retransmissions for datacenter communication,” in
SIGCOMM 2009.

[30] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” in SIGCOMM
2011.

[31] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast Congestion
Control for TCP in data center networks,” in CoNEXT 2010.

[32] H. Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, and Y. Zhang, “Tuning ECN
for data center networks,” in CoNEXT 2012.

[33] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
a fault-tolerant abstraction for in-memory cluster computing,” in NSDI
2012.

[34] J. Zhang, F. Ren, L. Tang, and C. Lin, “Taming TCP Incast Throughput
Collapse in Data Center Networks,” in ICNP 2013.

