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ABSTRACT
Many existing data center network (DCN) flow scheduling
schemes minimize flow completion times (FCT) based on
prior knowledge of flows and custom switch designs, mak-
ing them hard to use in practice. This paper introduces,
PIAS, a practical flow scheduling approach that minimizes
FCT with no prior knowledge using commodity switches.
At its heart, PIAS leverages multiple priority queues avail-
able in commodity switches to implement a Multiple Lev-
el Feedback Queue (MLFQ), in which a PIAS flow grad-
ually demotes from higher-priority queues to lower-priority
queues based on the bytes it has sent. In this way, short flows
are prioritized over long flows, which enables PIAS to emu-
late Shortest Job First (SJF) scheduling without knowing the
flow sizes beforehand. Our preliminary evaluation shows
that PIAS significantly outperforms all existing information-
agnostic solutions. It improves average FCT for short flows
by up to 50% and 40% over DCTCP [3] and L2DCT [16].
Compared to an ideal information-aware DCN transport, p-
Fabric [5], it only shows 4.9% performance degradation for
short flows in a production datacenter workload.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Ar-
chitecture and Design

General Terms
Design; Performance
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1. INTRODUCTION
There has been a virtually unanimous consensus in the

community that minimizing the flow completion times (FC-
T) is one of the most important goals for data center net-
work (DCN) transport designs [3–5, 9, 13, 15, 16, 20, 22].
This is because many of today’s cloud applications, such as
web search, online social networking, and retail, etc. have
very demanding latency requirements; even a small delay
directly affects application performance and degrades user
experience [3, 16].

To minimize FCT, many “ideal” solutions [5, 13, 15, 22]
assume accurate flow information, such as flow sizes and
deadlines. For example, PDQ, pFabric and PASE [5, 13, 15]
all assume that the flow size is known a priori and attempt to
approximate Shortest Job First (SJF), which is the optimal
scheduling discipline for minimizing the average FCT over
a single link. However, to ensure near-optimal performance,
they require non-trivial modifications on applications to ex-
pose accurate flow information to the transport layer.

In another line, congestion control-based approaches, such
as DCTCP, HULL and L2DCT [3, 4, 16], try to reduce FC-
T without relying on flow information by keeping low queue
occupancy using Explicit Congestion Notification [18]. How-
ever, the performance is sub-optimal because they rely on
fair bandwidth sharing with reactive and implicit rate con-
trol, which is known to be ineffective [5].

Motivated by these observations, this paper asks a funda-
mental question: without a priori knowledge of accurate flow
information, what is the best practical flow scheduling solu-
tion that minimizes FCT while being readily implementable
in today’s DCN with commodity switches?

The question leads to three key design goals:

• Information-agnostic: We must not assume a prior-
i knowledge of flow size information being available
from the applications.

• FCT minimization: The solution must be able to en-
force an optimal information-agnostic flow schedul-
ing. It should minimize average and tail FCTs for short
flows, while not adversely affecting FCTs of long flows.

• Readily-deployable: The solution must work with ex-
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isting commodity switches in DCNs and be backward
compatible with legacy TCP/IP stacks.

In this paper, we present PIAS, a practical information-
agnostic flow scheduling scheme that minimizes FCT in D-
CNs. PIAS mimics SJF with no prior information. At its
heart, PIAS leverages multiple priority queues available in
existing commodity switches to implement a Multiple Level
Feedback Queue (MLFQ) as shown in Figure 1. A PIAS flow
in its lifetime gradually demotes from higher-priority queues
to lower-priority queues based on the bytes it has sent. In this
way, PIAS ensures short flows to finish in the higher-priority
queues and, thus, be generally prioritized over long flows.
As a result, PIAS ends up effectively emulating SJF without
knowing the flow sizes beforehand.

PIAS is partially inspired by Least Attained Service
(LAS) policy [17] that gives service to the job that has re-
ceived the least amount of service in time-sharing systems.
However, directly adopting LAS has two problems: First,
enabling LAS on switches requires comparing the amoun-
t of bytes transferred for each flow, which is not supported
by commodity switches. Second, pure LAS can result in s-
tarvation especially when multiple large flows share a link.
PIAS’s MLFQ effectively solves the first problem while mit-
igating the second problem. This is because large flows in
PIAS will eventually sink to the lowest priority queue, and
they will share the link fairly in a FIFO manner, mitigating
the starvation problem.

Realizing the goals of PIAS and the benefits of MLFQ re-
quires solving three challenges. First, how to determine the
demoting threshold for each queue of MLFQ? Second, how
do we ensure optimal performance under realistic workload
in which flow size distribution varies across time and space
(i.e., links)? Third, how to ensure that PIAS works compati-
bly with legacy TCP/IP stacks in production DCNs?

We address the first challenge by deriving a set of opti-
mal demoting thresholds through solving a FCT minimiza-
tion problem. We further prove that the derived threshold
setting is robust to a reasonable range of traffic distributions.

A particular set of thresholds works best within a certain
range of traffic distributions. Thus, PIAS adaptively adjusts
the thresholds to keep up with the traffic dynamics. How-
ever, the key problem is that the mismatch between thresh-
olds and underlying traffic is inevitable in realistic traffic
traces. Once happens, short flows may be adversely affected
by large ones in a queue, impacting their latency. To address
this, we maintain low queue occupancy using ECN-based
rate control [3, 4, 16], so that short flows always see smal-
l queues and will not be seriously delayed even if they are
mistakenly placed in a queue with long flows.

Finally, we employ DCTCP for rate control. A poten-
tial problem is that many concurrent short flows can collude
and starve a long flow, triggering TCP timeouts and spuri-
ous retransmissions. In response, PIAS differentiates pack-
et starvation from real packet losses and reacts accordingly.

Figure 1: PIAS overview.

PIAS ensures that all its mechanisms can be implemented in
a shim layer over NIC without touching the TCP stack.

Our preliminary ns-2 simulations show that PIAS outper-
forms all existing information-agnostic solutions in realistic
DCN workloads, reducing the average FCT for short flows
by up to 50% and 40% compared to DCTCP and L2DCT [3,
16] respectively. In addition, our results show that PIAS de-
livers comparable performance (a 4.9% gap for short flows
in data mining workload) to an ideal information-aware DC-
N transport, pFabric [5].

2. PIAS DESIGN
At a high level, PIAS’s main mechanisms include packet

tagging at end hosts, priority queueing and ECN marking on
switches, and rate control. Figure 1 gives the overview of
PIAS.
Packet tagging at end-hosts: PIAS tags packets with pri-
ority at the end host. When a new flow starts, its packets
will be tagged with the highest priority P1. As more bytes
are sent, packets of this flow will be tagged with decreasing
priorities P

j

. We denote the thresholds for demoting the pri-
orities as ↵

j

. Such packet tagging is easy to implement in a
shim layer over the NIC.

A key challenge here is to determine the set of demot-
ing threshold to minimize the average FCT. We derive the
thresholds by solving an FCT minimization problem over a
single link (§3). Theoretical analysis show that our thresh-
old setting is robust to a certain range of traffic distributions
defined by the load and the flow size distribution (§3). This
enables us to perform packet tagging at the end hosts, while
achieving good performance.

As the flow size distribution and the load can vary sig-
nificantly over time, PIAS can periodically measures them
in the network [1, 8, 24]and adaptively adjusts the thresh-
olds. However, the mismatch between the threshold setting
and the underlying traffic is inevitable because past mea-
surements cannot always predict the future. Once a mis-
match happens, it can significantly impact short flows’ la-
tency. Thus, mitigating the impact is required for PIAS to
operate in highly dynamic datacenter networks. Our solu-
tion is to use ECN.
Priority queueing and ECN marking: The PIAS switches
enable two built-in functions available in most commodity
switches [15]:
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• Priority scheduling: Packets are dequeued strictly based
on their priorities.

• ECN marking: Packets are marked with Congestion
Experienced (CE) if the instant buffer occupancy is
greater than the ECN marking threshold.

With priority scheduling at switches and packet priori-
ty tagging at end hosts, PIAS performs MLFQ-based flow
scheduling in the network with stateless switches. Packets
with different priority tags are classified into different pri-
ority queues. When a link is idle, packets from the highest
non-empty priority queue are transmitted.

Our intention to employ ECN is to mitigate the effect of
the mismatch between the demoting thresholds and the traf-
fic distribution. By maintaining low queue occupancy, flows
always see small queues, and thus will not be seriously de-
layed even if they are placed in a queue with a long flow
due to non-optimal threshold settings. In addition, ECN also
prevents packet drops (e.g., incast [3, 21, 23]) which greatly
affects the flow completion time in practice.
Rate control: PIAS uses DCTCP [3] for rate control. Other
legacy TCP protocols can also be integrated into PIAS as
long as they are ECN-enabled. A key issue is to prevent
packet trapping. When packets of a large flow get trapped
in a low priority queue for long time, this may trigger TCP
timeouts and retransmissions. The retransmit packets would
increase the buffer occupation, leading to an aggressive ECN
marking or even packet drops in the worst case.

To address this, we adopt a probe based approach inspired
by [5, 15]. When a TCP flow experiences a fixed number
(e.g., two) of consecutive timeouts, PIAS end-hosts hold all
retransmitted packets and periodically generate small probe
packets with only one-byte payload for this flow. When PIAS
receives ACKs for the probe packets, it indicates that the
previous packets were dropped. PIAS then releases the held
retransmitted packets to the network. When PIAS receives
ACKs for previous packets, it indicates that these previous
packets were trapped rather than dropped, and then PIAS
deems the retransmission unnecessary and discards the held
packets accordingly. Note that the generation of probe pack-
ets and their corresponding ACKs along with holding and
releasing retransmitted TCP packets can be implemented en-
tirely at the end-hosts within a shim layer, without modifying
the TCP stack.
Discussion: The key idea of PIAS is to emulate SJF schedul-
ing which is optimal to minimize the average FCT over a sin-
gle link. An optimal algorithm that schedules flows over an
entire data center fabric with multiple links is not known [5].
In this sense, similar to pFabric [5], PIAS also makes local
prioritization decisions in every link. This approach in the-
ory may lead to performance loss over an ideal fabric [15].
For example, when a flow traverses multiple hops and gets
dropped at the last hop, causing bandwidth to be wasted on
the upstream links that could otherwise have been used to
schedule other flows.

To address this problem, we note that some existing so-
lutions [13, 15] leverage arbitration, where a common net-
work entity allocates rates to each flow based on global net-
work visibility. Although arbitration can bring some bene-
fits, it is challenging to implement and often requires non-
trivial switch modifications [13] or building a complex con-
trol plane [15], which is against our design goal. Fortunate-
ly, local-decision based solutions maintain very good per-
formance for most scenarios [5] and only experience per-
formance loss at extremely high loads, e.g., over 90% [15].
Note most datacenter networks operate at moderate loads
(e.g.,30% [6]).

3. DETERMINING THE THRESHOLDS
We describe our formulation to set the thresholds in MLFQ

to minimize the average FCT over a single link. We identify
this problem as a Sum-of-Linear-Ratios problem, and pro-
vide a method to derive the optimal thresholds analytically
for any given load and flow size distributions. We further
show the robustness of our threshold setting to traffic varia-
tions.
Problem formulation: We consider a bottleneck link and
flows that use the link. We assume there are K priority
queues P

j

(1jK) with P1 having the highest priority.
We denote the threshold for demoting to the priority queue
j (from j�1) as ↵

j�1 (2jK). We denote the cumula-
tive density function of flow size distribution as F (x). Thus
F (x) is the probability that a flow size is not larger than x.
Note we make no assumptions about the properties of F (x).

A flow of size x2[↵
j�1,↵j

) experiences delays from the
highest priority queue up to the j-th priority queue. We de-
note T

j

as the average time spent in the j-th queue. Let x+

be the size of this flow tagged with P

j

, the last priority it will
experience. Thus, x+=x�↵

max

(x), where ↵

max

(x) is the
largest demoting threshold less than x, and let j

max

(x) be
the index of this threshold.

The average FCT for this flow can be written as the sum of
the delays in each queue: T (x)=

P
j

max

(x)
l=1 T

l

+ x

+

1�⇢

j

max

(x)
.

The second term is upper-bounded by T

j

max

(x). Thus an
upperbound for T (x) is T (x)

P
min(j

max

(x)+1,K)
l=1 T

l

.
We have the following optimization problem, where we

choose a optimal set of thresholds {↵
j

} to minimize the ob-
jective: the average FCT of flows on this bottleneck link:

min
{↵

j

}
T =

KX

l=1

(✓
l

lX

m=1

T

m

)=
KX

l=1

(T
l

KX

m=l

✓

m

)

subject to ↵0=0,↵
K

=1

↵

j�1<↵

j

,j=1,...,K

(1)

Analysis: Let ✓
j

=F (↵
j

)�F (↵
j�1) be the percentage of

flows with sizes in [↵
j�1,↵j

). With a traffic load of ⇢, the
average time for a flow to stay in the lth queue, T

l

, can
be expressed as [14]: T

l

= ✓

l

⇢

1�⇢F (↵
l�1)

. Since
P

l

m=1✓m=
P

K

m=l

F (↵
m

)�F (↵
m�1), we can re-express the objective

as: T =
P

K

l=1Tl

(1�F (↵
l�1)).

P
K

l=1✓m=1.
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Because
P

K

l=1✓m=1, we can finally transform the prob-
lem as:

max
{✓

l

}
T

00=
K�1X

l=1

✓

l

1�⇢(
P

l�1
m=1✓m)

+
1�

P
K�1
m=1✓m

1�⇢

P
K�1
m=1✓m

(2)

which is a Sum-of-Linear-Ratios (SoLR) problem [19], a
well-known class of fractional programming problems. The
only constraint is that ✓

l

�0,8l. We find this formulation in-
teresting because the upperbound of average FCT is inde-
pendent of the flow distribution F (x), and only concerns ✓s,
which represent the percentages of this link’s traffic in dif-
ferent queues. Note that F (x) is needed only when we cal-
culate the thresholds, which means that we can first obtain
the optimal set of ✓s for all links, and then derive the priority
thresholds based on F (x).
Solution method: Generally, SoLR problem is NP-hard [7],
and the difficulty to solve this class of problems lies in the
lack of useful properties to exploit. For our problem, howev-
er, we find a set of properties that can lead to a closed-form
analytical solution to Problem 2. We describe the derivation
procedure as follows:

Consider the terms in the objective. Since the traffic load
⇢1, we have ⇢(

P
l�1
m=1✓m)

P
l�1
m=1✓m. Also, ✓

l

+
P

l�1
m=1✓m=P

l

m=1✓m1. Thus we have:

✓

l



KX

m=l

✓

m

=1�
l�1X

m=1

✓

m

1�⇢(
l�1X

m=1

✓

m

) (3)

The property to exploit is as follows: each term in the
summation, ✓

l

/(1�⇢

P
l�1
m=1✓m), is no larger than 1, and to

maximize the summation, we should make the numerator
and denominator as close as possible, so that the ratio is
close to 1.

Consider the first two portions, ✓1 and ✓2. By making the
the numerator and denominator equal, we have:

✓2=1�⇢✓1 (4)
We can obtain the expression of the third portion and all

the portions after it iteratively:
✓3=1�⇢(✓2+✓1)=1�⇢(1�(1�⇢)✓1) (5)

By the formula ✓

l

=1�⇢(
P

l�1
m=1✓m), each portion ✓

l

can
be represented by an expression of ✓1 iteratively. And by
the constraint

P
K

l=1✓l=1, we can obtain the analytical ex-
pressions of all ✓s, which represents the percentages of the
traffic in different priority queues on the link. Thus, given
traffic load ✓s and the flow size distribution F (·), it gives an
optimal set of demontion thresholds in the unit of bytes.
Robustness to traffic variations: Each flow may be bottle-
neck at different links, each of which usually observes dif-
ferent flow size distributions. Since PIAS’s priority tagging
is distributed at the end-hosts, and end-hosts do not know
the bottleneck links of their flows in advance, it is important
that the threshold setting (✓s) is robust to varying flow size
distributions as well as varying loads (⇢). In this section, we
show that 1) a wide range of load (⇢) and threshold settings
(✓s) leads to close-to-optimal FCT; and 2) given a reasonable
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Figure 3: Flow size distributions for web search and data
mining traffic. Different ⇢ correspond to different upper-
bound of ✓1. A threshold of 2 KB satisfies the optimali-
ty criterion for almost all distributions below 80% load.
(K=8).

threshold setting, the objective remains close-to-optimal for
most distributions even under varying loads.

Since every portion ✓

l

can be represented by ✓1, the ob-
jective function in Problem 2 can be expressed using only ✓1

and ⇢. We plot the objective function with respect to these
two variables in Figure 2. Consider the two cases where
K=4 and 8. In both cases, we can see that the range of
possible (✓1,⇢) pairs that result in close-to-optimal solutions
is large. This shows that PIAS is robust to different traffic
distributions. Note the algorithm we gave in §3 is only one
method to obtain a close-to-optimal solution without com-
plicated computation. Also, note that with increase in the
number of queues in the switch (K), the range for optimal
(✓1,⇢) becomes larger, which means that we should use a
large number queues in the switch for increased robustness.

Consider the traffic distributions in Figure 3. For the first
threshold ✓1 of c KB, the corresponding percentage of traf-
fic is F

�1(c). If the threshold of the first queue is set to
be 2 KB, it means that ✓1=60% of traffic will complete in
this queue for data mining distribution [12], and ✓1=10% for
web search distribution [3]. However, as shown in Figure 2,
when there are 8 queues at the switch (K=8), the range for
possible optimal ✓1 is large. The dashed lines in Figure 3
indicate the largest values that ✓1 can take without affecting
the optimality at different traffic loads. The significance is
the following: for any traffic distribution F (·), if F (2KB)
is below the dashed line for ⇢=0.8, then the 2 KB threshold
is optimal for F (·) for traffic load no more than 80%. We
find this optimality criterion for 2 KB is easily satisfiable in
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realistic flow size distributions because only extremely bi-
ased distributions, e.g., a distribution that more than 80% of
the flows are less than 2 KB, can violate it.

4. EVALUATION
We now evaluate the performance of PIAS using simula-

tions [2]. We answer three key questions:
• How does PIAS perform compared to information ag-

nostic schemes? PIAS outperforms DCTCP [3] and
L2DCT [16], and significantly improves the average flow
completion times for short flows by 50% and 40% respec-
tively. Furthermore, PIAS is close to LAS for short flows.
Also, by solving the starvation problem, it greatly outper-
forms LAS for long flows, reducing its average FCT by
50% in the web search workload.

• What is the effect of number of queues to PIAS? PIAS
achieves reasonable performance even with two queues.
However, using a larger number of queues improve the
overall performance.

• How does PIAS perform compared to pFabric? With-
out a priori knowledge of flows, PIAS achieves the com-
parable performance to pFabric for short flows (within a
4.9% gap in the data mining workload).
We use a leaf-spine topology with nine leaf switches to

four spine switches. Each leaf switch has 16 10Gbps down-
links (144 hosts) and four 40Gbps uplinks to the spine, form-
ing a non-oversubscribed network. The base round-trip time
across the spine (four hops) is 85.2µs. We use packet spray-
ing [10] for load balancing. We use the web search work-
load [3] and the data mining workload [12], taken from pro-
duction DCNs, whose flow size distributions are shown in
Figure 3.

4.1 Comparison with information-agnostic
schemes
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Figure 4: Overall average flow completion time

We mainly compare PIAS (using eight queues) with LAS,
DCTCP [3] and L2DCT [16].
Overall performance: Figure 4 shows the overall average
FCT of information-agnostic schemes under different work-
loads and load levels. From the figure, we see that PIAS
performs well overall. First, PIAS has an obvious advantage
over DCTCP and L2DCT in all the cases. Second, PIAS is
comparable to LAS in the data mining workload, but outper-
forms LAS by 28% (at load 0.8) in the web search workload.
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Figure 5: Web search workloads: Normalized FCT
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Figure 6: Data mining workloads: Normalized FCT

This is because PIAS effectively mitigates the starvation be-
tween long flows unlike LAS. In the data mining workload,
there are not so many large flows sharing the same link. As
a result, LAS does not suffer from starvation as much.
Breakdown by flow size: We now breakdown the average
FCT across different flow sizes, (0,100KB] and (10MB,1)
(Figure 5 and 6).1 We normalize each flow’s actual FCT to
the best possible value it can achieve in the idle fabric.

For short flows in (0,100KB], we find that PIAS signifi-
cantly outperforms both DCTCP and L2DCT, improving the
average FCTs by up to 50% and 40% respectively. This is
because DCTCP and L2DCT use reactive rate control at the
end hosts, which is not as effective as PIAS for in-network
flow scheduling. We further observe that PIAS achieves sim-
ilar performance as LAS for short flows. PIAS performs s-
lightly worse than LAS in the web search workload when
there is a congestion event (e.g., packet drop or ECN).

For long flows in (10MB,1), we find that PIAS is slightly
worse than LAS in the data mining workload, but performs
significantly better in the web search workload (50% reduc-
tion in FCT at load 0.8). This is because, in the web search
workload, it is common that multiple large flows are present
in the same link. In such scenarios, LAS always stops old-
er flows to send new flows. Since large flows usually take
a very long time to complete, it causes a serious starvation
problem. However, with PIAS, large flows receive their fair
sharing in the lowest priority queue, which mitigates this
problem. PIAS performs comparable to DCTCP under the
web search workload and achieves 17% lower FCT in the
data mining workload.

4.2 Effect of number of queues to PIAS
We evaluate the performance of PIAS with different num-

1We omit the performance in (100KB,10MB] for space limitation.
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Figure 7: Overall average FCT with different queues

bers of queues. Figure 7 shows the overall performance and
Figure 8 shows the performance of small flows as we in-
crease the number of queues from two to eight.

In Figure 7, we see that PIAS generally achieves better
performance as we increase the number of queues. This
trend is expected because with more queues, we can perform
more fine-grained flow prioritization. Figure 8 reveals that
for short flows the performance improvement is relatively
small as we increase the number of queues (about 6% differ-
ence for both web search and data mining workloads). Ac-
tually, we find that the improvement in FCT mainly comes
from the medium size flows (100KB,10MB] and large flows
(10MB,1). Due to the space limitation, we omit detailed
data and figures here. For example, our results show that
PIAS with eight queues reduces the average FCT by 48% for
flows of size (100KB,10MB] compared to two-queue PIAS
in the data mining workload.

4.3 Comparison with information-aware
schemes

We compare PIAS to an ideal information-aware approach
for DCN transport, pFabric [5], on small flows using the two
workloads. We note that the most recent work PASE [15] can
achieve better performance than pFabric under some work-
load (e.g., very high load and single rack). But in our topol-
ogy setting with realistic workloads, pFabric is better than
PASE and PDQ [13]; pFabric actually achieves near-optimal
performance. Thus, we directly compare PIAS with pFabric
in Figure 8. In general, PIAS delivers comparable average
FCT for short flows as pFabric, particularly within 4.9% in
the data mining workload.

We find that the gap between PIAS and pFabric is smaller
in the data mining workload than in the web search work-
load. This is mainly because the data mining workload is
more skewed in terms of the flow size distribution than the
web search workload. Around 82% of data mining flows are
smaller than 100KB, while only 54% of web search flows
are smaller than 100KB. For the web search workload, it is
more likely that large flows will coexist with short flows in
the high priority queues at the start of the flow, which in turn
increases the queueing delay for short flows.

5. RELATED WORK
Many transport solutions try to minimize FCT. We classi-
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Figure 8: Average normalized FCT for (0,100KB]

fy them in to two categories: information-agnostic [3, 4, 16]
and information-aware approaches [5, 13, 15].

Information-agnostic solutions [3, 4, 16] improve FCT by
keeping low queue occupancy. L2DCT [16] adds bytes sent
information to DCTCP [3]. HULL [4] further improves the
latency of DCTCP by trading network bandwidth. In ad-
dition, RCP [11] emulates processing sharing to minimize
FCT in the Internet.

Information-aware solutions [5, 13, 15] attempt to approx-
imate the ideal, preemptive SJF scheduling. PDQ [13] em-
ploys switch arbitration and uses explicit rate control. pFab-
ric [5] implements decentralized in-network prioritization.
PASE [15] synthesizes existing solutions to provide better
performance. These solutions can potentially provide su-
perior performance but require non-trivial modifications to
both end hosts and the switch hardware.

There are also some other works [9, 20, 22] focusing on
meeting flow deadlines. D3 [22] achieves explicit rate con-
trol to flows while D2TCP [20] and MCP [9] add deadline-
awareness to ECN-based window adjustment.

6. CONCLUSION
In this paper, we introduced PIAS, a practical information-

agnostic flow scheduling to minimize FCT in DCNs. With-
out a priori knowledge of flow information, PIAS minimizes
FCT by implementing a Multiple Level Feedback Queue
(MLFQ) scheduling discipline. PIAS builds on a theoretical
foundation and is readily deployable in today’s DCNs with
no changes to the legacy TCP stack, switch hardware, and
applications. Our preliminary evaluation shows that PIAS
outperforms all information-agnostic schemes and provides
comparable benefits to information-aware schemes on short
flows. We plan to implement a PIAS prototype and evaluate
its performance with real applications.
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