
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

PIAS: Practical Information-Agnostic Flow
Scheduling for Commodity Data Centers

Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang

Abstract— Many existing data center network (DCN) flow
scheduling schemes, that minimize flow completion times (FCT)
assume prior knowledge of flows and custom switch functions,
making them superior in performance but hard to implement in
practice. By contrast, we seek to minimize FCT with no prior
knowledge and existing commodity switch hardware. To this
end, we present PIAS, a DCN flow scheduling mechanism that
aims to minimize FCT by mimicking shortest job first (SJF) on
the premise that flow size is not known a priori. At its heart,
PIAS leverages multiple priority queues available in existing
commodity switches to implement a multiple level feedback
queue, in which a PIAS flow is gradually demoted from higher-
priority queues to lower-priority queues based on the number
of bytes it has sent. As a result, short flows are likely to
be finished in the first few high-priority queues and thus be
prioritized over long flows in general, which enables PIAS to
emulate SJF without knowing flow sizes beforehand. We have
implemented a PIAS prototype and evaluated PIAS through both
testbed experiments and ns-2 simulations. We show that PIAS
is readily deployable with commodity switches and backward
compatible with legacy TCP/IP stacks. Our evaluation results
show that PIAS significantly outperforms existing information-
agnostic schemes, for example, it reduces FCT by up to 50%
compared to DCTCP [11] and L2DCT [32]; and it only has
a 1.1% performance gap to an ideal information-aware scheme,
pFabric [13], for short flows under a production DCN workload.

Index Terms— Data center networks, flow scheduling.

I. INTRODUCTION

IT HAS been a virtually unanimous consensus in the
community that one of the most important objectives for

data center network (DCN) transport designs is to minimize
the flow completion times (FCT) [11]–[13], [24], [31], [32].

Manuscript received May 9, 2016; revised December 31, 2016;
accepted January 29, 2017; approved by IEEE/ACM TRANSACTIONS ON

NETWORKING Editor A. Wierman. This work was supported in part by
the Hong Kong RGC under Grant ECS-26200014, Grant GRF-16203715,
Grant GRF-613113, and Grant CRF-C703615G; in part by the China 973
under Grant 2014CB340303; in part by the China NSFC under
Grant 61602194 and Grant 61321491; in part by the Collaborative Innovation
Center of Novel Software Technology and Industrialization, and the Jiangsu
Innovation and Entrepreneurship (Shuangchuang) Program, the ICT R&D
Program of MSIP/IITP, Republic of Korea, under Grant B0101-15-1368 and
Grant B0126-15-1078; and in part by the Basic Science Research Program of
NRF within the MSIP, Republic of Korea, under Grant 2013R1A1A1076024.

W. Bai, L. Chen, and K. Chen are with The Hong Kong Univer-
sity of Science and Technology, Hong Kong (e-mail: wbaiab@cse.ust.hk;
lchenad@cse.ust.hk; kaichen@cse.ust.hk).

D. Han is with the Korea Advanced Institute of Science and Technology,
Daejeon 34141, South Korea (e-mail: dongsuh@ee.kaist.ac.kr).

C. Tian is with the State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210000, China (email: tianchen@nju.edu.cn).

H. Wang is with the University of Toronto, Toronto, ON M5S 3G4,
Canada (e-mail: wh.sjtu@gmail.com).

Digital Object Identifier 10.1109/TNET.2017.2669216

This is because many of today’s cloud applications, such as
web search, social networking, and retail recommendation,
etc., have very demanding latency requirements, and even a
small delay can directly affect application performance and
degrade user experience [11], [32].

To minimize FCT, most previous proposals [13], [24], [31],
[43] assume prior knowledge of accurate flow information,
e.g., flow sizes or deadlines, to achieve superior performance.
For example, PDQ, pFabric and PASE [13], [24], [31] all
assume flow size is known a priori, and attempt to approxi-
mate Shortest Job First (SJF, preemptive), which is the optimal
scheduling discipline for minimizing the average FCT over
a single link. In this paper, we question the validity of
this assumption, and point out that, for many applications,
such information is difficult to obtain, and may even be
unavailable (§II). Existing transport layer solutions with this
assumption are therefore very hard to implement in practice.

We take one step back and ask: without prior knowledge of
flow size information, what is the best scheme that minimizes
FCT with existing commodity switches?

Motivated by the above question, we set up our key design
goals as follows:

• Information-agnostic: Our design must not assume
a priori knowledge of flow size information being avail-
able from the applications.

• FCT minimization: The solution must be able to
enforce a near-optimal information-agnostic flow sched-
ule. It should minimize the average and tail FCT for
latency-sensitive short flows, while not adversely affect-
ing the FCT of long flows.

• Readily-deployable: The solution must work with exist-
ing commodity switches in DCNs and be backward
compatible with legacy TCP/IP stacks.

When exploring possible solution spaces, we note that
some existing approaches such as DCTCP, Timely, HULL,
etc. [11], [12], [30], [32], [47] reduce FCT without relying
on flow size information. They generally improve FCT by
maintaining low queue occupancy through mechanisms like
adaptive congestion control, ECN, pacing, etc. However, they
do not provide a full answer to our question, because they
mainly perform end-host based rate control which is ineffec-
tive for flow scheduling [13], [31].

In this paper, we answer the question with PIAS, a practi-
cal information-agnostic flow scheduling that minimizes the
FCT in DCNs. In contrast to previous FCT minimization
schemes [13], [24], [31] that emulate SJF by using prior
knowledge of flow sizes, PIAS manages to mimic SJF with

1063-6692 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

no prior information. At its heart, PIAS leverages multiple
priority queues available in existing commodity switches
to implement a Multiple Level Feedback Queue (MLFQ),
in which a PIAS flow is gradually demoted from higher-
priority queues to lower-priority queues based on the bytes
it has sent during its lifetime. In this way, PIAS ensures in
general that short flows are prioritized over long flows, effec-
tively emulating SJF without knowing flow sizes beforehand.

Generally speaking, there are three components in the
PIAS framework. A central entity collects traffic information
reported from each end host periodically, calculates the demo-
tion thresholds based on the aggregated traffic statistics from
the entire network, and distributes the thresholds to all end
hosts. Then each host uses such thresholds to tag the traffic.
And finally, the PIAS switches simply perform strict priority
queueing based on the packet tags.

However, we face several concrete challenges before making
PIAS truly effective. First, how to determine the demotion
threshold for each queue of MLFQ? Second, as the traffic
varies across both time and space, how to keep PIAS’s
performance in such a dynamic environment? Third, how to
ensure PIAS’s compatibility with legacy TCP/IP stacks in
production DCNs?

For the first challenge, we derive a set of optimal demotion
thresholds for MLFQ through solving a FCT minimization
problem. We further show that the derived threshold set is
robust to a reasonable range of traffic distributions. This
enables PIAS to distribute the demotion thresholds to the end
hosts for packet tagging while only performing strict priority
queueing, a built-in function, in the PIAS switches.

For the second challenge, since one set of demotion thresh-
olds only works the best for a certain range of traffic dis-
tributions, PIAS adjusts the thresholds to keep up with the
traffic dynamics. However, the key problem is that a mismatch
between thresholds and underlying traffic is inevitable. Once
happens, short flows may be adversely affected by large ones
in a queue, impacting on their latency. Inspired by ideas from
ECN-based rate control [11], PIAS employs ECN to mitigate
the mismatch problem. Our insight is that, by maintaining low
queue occupancy, short flows always see small queues and
thus will not be seriously delayed even if they are mistakenly
placed in a queue with a long flow due to mismatched
thresholds.

For the third challenge, we employ DCTCP-like transport at
the PIAS end hosts and find that PIAS interacts favorably with
DCTCP or other legacy TCP protocols with ECN enabled.
A potential problem is that many concurrent short flows may
starve a coexisting long flow, triggering TCP timeouts and
degrading application performance. We measure the extent of
starvation on our testbed with a realistic workload and analyze
possible solutions. We ensure that all mechanisms in PIAS can
be implemented by a shim layer over NIC without touching
the TCP stack.

We have implemented a PIAS prototype (§IV). On the end
host, we implement PIAS as a kernel module in Linux, which
resides between the Network Interface Card (NIC) driver and
the TCP/IP stack as a shim layer. It does not touch any TCP/IP
implementation that natively supports various OS versions.

In virtualized environments, PIAS can also support virtual
machines well by residing in hypervisor (or Dom 0). At the
switch, PIAS only needs to enable priority queues and ECN
which are both built-in functions readily supported by existing
commodity switch hardware.

We evaluate PIAS on a small-scale testbed with 16 Dell
servers and a commodity Pronto-3295 Gigabit Ethernet
switch (Broadcom BCM#56538). In our experiments, we find
that PIAS reduces the average FCT for short flows
by ∼29-49% and ∼18-34% compared to DCTCP under
two realistic DCN traffic patterns. It also improves the
query performance by ∼28-30% in a Memcached [6]
application (§V-A). We further dig into different design com-
ponents of PIAS such as queues, optimal demotion threshold
setting, ECN, and demonstrate the effectiveness of each of
their contributions to PIAS’s performance (§V-B).

To complement our small-scale testbed experiments, we fur-
ther conduct large-scale simulations in a simulated 10/40G
network using ns-2 [9]. In our simulations, we show that
PIAS outperforms all existing information-agnostic solutions
under realistic DCN workloads, reducing the average FCT
for short flows by up to 50% compared to DCTCP and
L2DCT. In addition, our results show that PIAS, as a readily-
deployable information-agonistic scheme, also delivers a com-
parable performance to a clean-slate information-aware design,
pFabric [13], in certain scenarios. For example, there is only
a 1.1% gap to pFabric for short flows in a data mining
workload [22] (§V-C).

To make our work easy to reproduce, we made our
implementation and evaluation scripts available online at:
http://sing.cse.ust.hk/projects/PIAS.

II. MOTIVATION

To motivate our design, we introduce a few cases in which
the accurate flow size information is hard to obtain, or simply
not available.

HTTP Chunked Transfer: Chunked transfer has been sup-
ported since HTTP 1.1 [20], where dynamically generated
content is transferred during the generation process. This mode
is widely used by data center applications. For example, appli-
cations can use chunked transfer to dump database content
into OpenStack Object Storage [8]. In chunked transfer, a flow
generally consists of multiple chunks, and the total flow size
is not available at the start of the transmission.

Database Query Response: Query response in database
systems, such as Microsoft SQL Server [7], is another exam-
ple. Typically, SQL servers send partial query results as they
are created, instead of buffering the result until the end of
the query execution process [7]. The flow size again is not
available at the start of a flow.

Stream Processing: Stream processing systems are currently
gaining popularity. In Apache Storm [2], after the master
node distributes tasks to worker nodes, workers will analyze
the tasks and pre-establish persistent connections with related
worker nodes. During the data processing, data tuples com-
pleted in one node are continuously delivered to the next node
in the stream processing chain. The amount of data to be
processed is unknown until the stream finishes.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAI et al.: PIAS: PRACTICAL INFORMATION-AGNOSTIC FLOW SCHEDULING FOR COMMODITY DATA CENTERS 3

Practical Limitations: We note that there are certain cases
where the flow size information can be obtained or inferred.
For example, in Hadoop [4] the mapper will first write the
intermediate data to disk before the corresponding reducer
starts to fetch the data, thus the flow size can be obtained
in advance [33]. Even so, practical implementation issues are
still prohibitive. First, we need to patch all modules in every
application that generate network traffic, which is a burden for
applications programmers and/or network operators. Second,
current operating systems lack appropriate interface for deliv-
ering the flow size information to the transport layer. Thus,
kernel modifications are also required.

III. THE PIAS DESIGN

A. Design Rationale

Compared to previous solutions [13], [24], [31] that emulate
SJF based on prior knowledge of flow sizes, PIAS distin-
guishes itself by emulating SJF with no prior information.
At its core, PIAS exploits multiple priority queues available
in commodity switches and implements a MLFQ, in which
a PIAS flow is demoted from higher-priority queues to
lower-priority queues dynamically according to its bytes sent.
Through this way, PIAS enables short flows to finish in the
first few priority queues, and thus in general prioritizes them
over long flows, effectively mimicking SJF without knowing
the flow sizes.

We note that scheduling with no prior knowledge is
known as non-clairvoyant scheduling [28]. Least Attained
Service (LAS) is one of the best known algorithms that
minimize the average FCT in this case [37]. LAS tries to
approximate SJF by guessing the remaining service time of a
job based on the service it has attained so far. LAS is especially
effective in DCN environments where traffic usually exhibits
long-tail distribution—most flows are short and a small percent
are very large [11], [22], and LAS favors short flows.

PIAS is partially inspired by LAS. However, we note that
directly enabling LAS at the switch requires us to compare
the amount of bytes transferred for each flow, which is
not supported in existing commodity switches. Furthermore,
although DCN traffic is generally long-tailed, it varies across
both time and space, and on some switch ports the distribution
may temporarily not be so. Blindly using LAS will exacerbate
the problem when multiple long flows coexist. This is because
pure LAS needs to compare and prioritize between any two
flows, when some long flows meet a longer flow, it is possible
that they can collectively cause the longer one to starve.

To this end, PIAS leverages multiple priority queues avail-
able in existing commodity switches (typically 4–8 queues per
port [13]) to implement a MLFQ (see Figure 1). Packets in
different queues of MLFQ are scheduled with strict priority,
while packets in the same queue are scheduled based on FIFO.
In a flow’s lifetime, it is demoted dynamically from ith queue
down to the (i+1)th queue after transmitting more bytes than
queue i’s demotion threshold, until it enters the last queue.
To further prevent switches from maintaining the per-flow
state, PIAS distributes packet priority tagging (indicating a
flow’s sent size) to end hosts, allowing the PIAS switches to

Fig. 1. PIAS overview.

perform strict priority queueing only, which is already a built-
in function in today’s commodity switches.

By implementing MLFQ, PIAS gains two benefits. First,
it prioritizes short flows over large ones because short flows
are more likely to finish in the first few higher priority queues
while large flows are eventually demoted to lower priority
queues. This effectively enables PIAS to approximate SJF
scheduling that optimizes average FCT while being read-
ily implementable with existing switch hardware. Second,
it allows large flows that are demoted to the same low priority
queues to share the link fairly. This helps to minimize the
response time of long flows, mitigating the starvation problem.

However, there are several concrete challenges to consider
in order to make PIAS truly effective. First, how to determine
the demotion threshold for each queue of MLFQ to minimize
the FCT? Second, as DCN traffic varies across both time and
space, how to make PIAS perform efficiently and stably in
such a dynamic environment? Third, how to ensure PIAS’s
compatibility with legacy TCP/IP stacks in production DCNs?
Next, we explain the details of the mechanism we design to
address all these challenges.

B. Detailed Mechanisms

At a high level, PIAS’s main mechanisms include packet
tagging, switch design, and rate control.

1) Packet Tagging at End-Hosts: PIAS performs packet
tagging at each end host as shown in Figure 1. There are
K priorities Pi, 1 ≤ i ≤ K and (K − 1) demotion thresholds
αj , 1 ≤ j ≤ K − 1. We assume P1 > P2 . . . > PK and
α1 ≤ α2 . . . ≤ αK−1.

At the end host, when a new flow is initialized, its packets
will be tagged with the highest priority P1, giving it the highest
priority in the network. As more bytes are sent, the packets
of this flow will be tagged with decreasing priorities Pj (2 ≤
j ≤ K) and receive decreasing priorities in the network. The
threshold to demote priority from Pj−1 to Pj is αj−1.

One challenge is to determine the demotion threshold for
each priority to minimize the average FCT. By solving a
FCT minimization problem, we derive a set of analytical
solutions for optimal demotion thresholds (details in §III-C).
Note that in PIAS we calculate the thresholds based on traffic
information from the entire DCN and distribute the same
threshold setting to all the end hosts. Our experiments and
analysis show that such threshold setting is effective and also
robust to a certain range of traffic variations (§V). This is a key



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

reason we can decouple packet tagging from switches to end
hosts while still maintaining good performance, which relieves
the PIAS switches of having to keep the per-flow state.

As traffic changes over time, PIAS needs to adjust the
demotion thresholds accordingly. To keep track of traffic
variations, each end host can periodically report its local
traffic information to a central entity for statistics, and there
are many existing techniques available for this purpose [46].
However, historical traffic cannot predict the future per-
fectly, and traffic distribution also differs across different
links. Mismatches between threshold setting and underly-
ing traffic are inevitable, which can hurt latency sensitive
short flows. Therefore, mitigating the impact of the mis-
match is a must for PIAS to operate in the highly
dynamic DCNs. Our solution, as shown subsequently, is to
employ ECN.

2) Switch Design: The PIAS switches enable the follow-
ing two basic mechanisms, which are built-in functions for
existing commodity switches [31].

• Priority scheduling: Packets are dequeued based on their
priorities strictly when a fabric port is idle.

• ECN marking: The arriving packet is marked with Con-
gestion Experienced (CE) if the instant buffer occupancy
is larger than the marking threshold.

With priority scheduling at the switches and packet tagging
at the end hosts, PIAS performs MLFQ-based flow scheduling
using stateless switches in the network. Packets with different
priority tags are classified into different priority queues. When
the link is idle, the head packet from the highest non-empty
priority queue is transmitted.

We choose priority scheduling over weighted fair queue-
ing (WFQ) for two reasons. First, strict priority queueing
provides better in-network prioritization than WFQ and thus
can achieve lower average FCT. Second, packets from a
PIAS flow will be placed and scheduled in multiple queues,
with WFQ, it may cause packet out-of-order problem as
a latter packet has a chance to dequeue before an earlier
packet, which degrades TCP performance. However, with strict
priority queueing, PIAS is free of packet reordering, because
a flow is always demoted from a higher priority queue to a
lower priority queue, and an earlier packet is guaranteed to
dequeue before a latter packet at each hop. Compared with
priority scheduling, one advantage of WFQ is that it can
potentially avoid starvation for long-lived flows. We quantify
the starvation problem using testbed experiments subsequently
and find that, even with priority scheduling, PIAS is not
adversely affected by starvation.

Our intention to employ ECN is to mitigate the effect of
the mismatch between the demotion thresholds and the traffic
distribution. We use a simple example to illustrate the problem
and the effectiveness of our solution. We connect 4 servers to
a Gigabit switch as in Figure 2. One server is receiver (R)
and the other three are senders (S1, S2 and S3). In our
experiment, the receiver R continuously fetches 10MB data
from S1 and S2, and 20KB data from S3. We configure the
strict priority queueing with 2 queues on the switch egress
port to R. Since there are two priorities, we only need to have
one demotion threshold from the high priority queue to the

Fig. 2. Illustration example: (a) threshold right; (b) threshold too small,
packets of short flow get delayed by long flow after prematurely demoted to
the low priority queue; (c) threshold too large, packets of large flow stay too
long in the high priority queue, affecting short flow.

TABLE I

COMPLETION TIMES OF 20KB SHORT FLOWS

low priority queue. Clearly, in this case the optimal demotion
threshold should be 20KB.

We intentionally apply three different demotion thresholds
10KB, 20KB and 1MB respectively, and measure the FCT of
the 20KB short flows. Table I shows the results of PIAS and
PIAS without ECN. When the threshold is 20KB (right), both
PIAS and PIAS without ECN achieve an ideal FCT. However,
with a larger threshold (1MB) or a smaller threshold (10KB),
PIAS exhibits pronounced advantages over PIAS without ECN
at both the average and 99th percentile. This is because,
1) if the threshold is too small, packets of short flows prema-
turely enter the low priority queue and experience queueing
delay behind the long flows (see the scenario in Figure 2 (b));
2) if the threshold is too large, packets of long flows over-stay
in the high priority queue, thus also affecting the latency of
short flows (see scenario in Figure 2 (c)).

By employing ECN, we can keep low buffer occupancy and
minimize the impact of long flows on short flows, which makes
PIAS more robust to the mismatch between the demotion
thresholds and traffic distribution.

3) Rate Control: PIAS employs DCTCP [11] as end host
transport, and other legacy TCP protocols with ECN enabled
(e.g., ECN� [44] and DCQCN [47]) can also be integrated
into PIAS. We require PIAS to interact smoothly with the
legacy TCP stack. One key issue is to handle flow starvation:
when packets of a large flow get starved in a low priority
queue for long time, this may trigger TCP timeouts and
retransmissions. The frequent flow starvation may disturb
the transport layer and degrade application performance. For
example, a TCP connection which is starved for long time
may be terminated unexpectedly.

To address the problem, we first note that PIAS can well
mitigate the starvation between long flows, because two long
flows in the same low priority queue will fairly share the link
in a FIFO manner. In this way, PIAS minimizes the response
time of each long flow, effectively eliminating TCP timeouts.

However, it is still possible that many concurrent short flows
will starve a long flow, triggering its TCP timeouts. To quantify



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAI et al.: PIAS: PRACTICAL INFORMATION-AGNOSTIC FLOW SCHEDULING FOR COMMODITY DATA CENTERS 5

this, we run the web search benchmark traffic [11] (as shown
in Figure 4) at 0.8 load in our 1G testbed, which has 16 servers
connected to a Gigabit switch. We set RTOmin to 10ms
and allocate 8 priority queues for PIAS. We enable both
ECN and dynamic buffer management in our switch. In such
setting, TCP timeouts, if happen, will be mainly caused by
starvation rather than packet drops. This experiment con-
sists of 5,000 flows, around 5.7 million MTU-sized packets.
We measure the number of TCP timeouts to quantify the
extent of starvation. We find that there are only 200 timeout
events and 31 two consecutive timeout events in total. No TCP
connection is terminated unexpectedly. The result indicates
that, even at a high load, starvation is not common and will
not degrade application performance adversely. We believe one
possible reason is that the per-port ECN we used (see §IV-A2)
may mitigate starvation by pushing back high priority flows
when many packets from low priority long flows get starved.
Another possible solution for handling flow starvation is
treating a long-term starved flow as a new flow. For example,
if a flow experiences two consecutive timeouts, we set its bytes
sent back to zero. This ensures that a long flow can always
make progress after timeouts. Note that the implementation of
the above mechanism can be integrated to our packet tagging
module without any changes to the networking stack.

4) Discussion: We further discuss two potential issues.
Local Decision: The key idea of PIAS is to emulate SJF

which is optimal to minimize average FCT over a single link.
However, there does not exist an optimal scheduling policy to
schedule flows over an entire DCN with multiple links [13].
In this sense, similar to pFabric [13], PIAS also makes switch
local decisions. This approach in theory may lead to some
performance loss over the fabric [31]. For example, when
a flow traverses multiple hops and gets dropped at the last
hop, it causes bandwidth to be wasted on the upstream links
that could otherwise have been used to schedule other flows.
We note that some existing solutions [24], [31] leverage arbi-
tration, where a common network entity allocates rates to each
flow based on global network visibility, to address this prob-
lem. However, they are hard to implement because they require
either non-trivial switch changes [24] or a complex control
plane [31], which is against our design goal. Furthermore,
some arbitration mechanisms [31] implicitly assume that each
flow uses a single path. This assumption does not hold when
network operators use advanced per-packet/flowlet/flowcell
load balancing schemes [10], [17], [23]. Fortunately, local-
decision based solutions maintain very good performance
for most scenarios [13] and only experience performance
loss at extremely high loads, e.g., over 90% [31]. However,
most DCNs operate at moderate loads, e.g., 30% [15]. Our
ns-2 simulation (§V-C) with production DCN traffic further
confirms that PIAS works well in practice.

Demotion Threshold Updating: By employing ECN, PIAS
can effectively handle the mismatch between the demotion
thresholds and traffic distribution (see §V-B). This suggests
that we do not need to frequently change our demotion
thresholds which may be an overhead. In this paper, we sim-
ply assume the demotion thresholds are updated periodically
according to the network scale (which decides the time for

information collection and distribution) and leave dynamic
threshold updates as future work.

C. Optimizing Demotion Thresholds

In this section, we describe our formulation to derive the
optimal demotion thresholds for minimizing the average FCT.
We leverage existing optimization software to derive the opti-
mal thresholds numerically for any given load and flow size
distribution. We find that the demotion thresholds depend on
both load and flow size distribution. As flow size distribution
and load change across both time and space, ideally, one
should use different thresholds for different links at different
times. However, in practice, it is quite challenging to obtain
such fine-grained link level traffic information across the
entire DCN. Hence, we use the overall flow size distribution
and load measured in the entire DCN as an estimate to
derive a common set of demotion thresholds for all end hosts.
We note that this approach is not optimal and there is room
for improvement. However, it is more practical and provides
considerable gains, as shown in our evaluation (§V).

Problem Formulation: We assume there are K priority
queues Pi, 1 ≤ i ≤ K , where P1 has the highest priority.
We denote the threshold for demoting the priority from i − 1
to i as αi−1, 2 ≤ i ≤ K . We define αK = ∞, so that the
largest flows are all in this queue, and α0 = 0.

Denote the cumulative density function of flow size dis-
tribution as F (x), thus F (x) is the probability that a flow
size is no larger than x. Let Li denote the number of packets
a given flow brings in queue Pi for i = 1, . . . , K . Thus,
E[Li] ≤ (αi −αi−1)(1−F (αi−1)). Denote flow arrival rate
as λ, then the packet arrival rate to queue i is λi = λE[Li].

The service rate for a queue depends on whether the queues
with higher priorities are all empty. Thus, P1 (highest priority)
has capacity μ1 = μ where μ is the service rate of the link.
The fraction of time that queue 1 is idle is (1−ρ1) where ρi =
λi/μi is simply the utilization of queue Pi. Thus, the service
rate of P2 is μ2 = (1 − ρ1)μ since its service rate is μ (the
full link capacity) given that P1 is empty. Thus, we have μi =
Πi−1

j=0(1 − ρj)μ, with ρ0 = 0. Thus, Ti = 1/(μi − λi) which
is the average delay of queue i assuming M/M/1 queues.1

For a flow with size in [αi−1, αi), it experiences the delays
in different priority queues up to the i-th queue. Denote Ti as
the average time spent in the i-th queue. Let imax(x) be the
index of the smallest demotion threshold larger than x. So the
average FCT for a flow with size x, T (x), is upper-bounded
by:

∑imax(x)
i=1 Ti.

Thus we have an optimization problem of choosing an
optimal set of thresholds {αi} to minimize the average FCT of
flows on this bottleneck link. Let θi = F (αi)−F (αi−1) denote
the percentage of flows with sizes in [αi−1, αi). Using θi to
equivalently express αi, we can formulate the problem as:

min
{θi}

T =
K∑

l=1

(θl

l∑

m=1

Tm) =
K∑

l=1

(Tl

K∑

m=l

θm)

subject to θi ≥ 0, i = 1, . . . , K − 1 (1)

1We use M/M/1 queues to simplify the analysis, and the robustness of this
formulation is verified in §V experimentally.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

The solution of this problem is {θopt
i }, from which we can

retrieve the thresholds {αopt
i } with αopt

i = F−1(
∑i

j=1 θj),
where F−1(·) is the inverse of F (·).

Solution Method: We have products of the variables (θi)
both in numerators and denominators of the objective.
Since the number of variables is small (the number of
queues ≤ 8), the optimization problem can be solved numer-
ically and quickly with existing solvers. We use global opti-
mization toolbox available in SciPy [27], which searches for
the optimal solution using basin-hopping algorithm [41], [42]
to overcome the non-convexity of the problem. For 2, 4,
8-queue cases, the problem is on average solved in 59.61s,
86.87s, 160.11s respectively on a server in our test-
bed (described in §V). Since the flow size distribution is
collected over a long period of time,2 the time for calculating
the thresholds is negligible in comparison.

In summary, given flow arrival rate λ3 and flow size
distribution F (·), we can compute the thresholds relatively
quickly, and enforce them at the end-hosts.

IV. IMPLEMENTATION AND TESTBED SETUP

A. PIAS Implementation

We have implemented a prototype of PIAS. We now
describe each component of our prototype in detail.

1) Packet Tagging: The packet tagging module is respon-
sible for maintaining per-flow state and marking packets with
priority at end hosts. We implement it as a kernel module
in Linux. The packet tagging module resides between the
TCP/IP stack and Linux TC, which consists of three com-
ponents: a NETFILTER [5] hook, a hash based flow table, and
a packet modifier.

The operations are as follows: 1) the NETFILTER hook
intercepts all outgoing packets using the LOCAL_OUT hook
and directs them to the flow table. 2) Each flow in the
flow table is identified by the 5-tuple: src/dst IPs, src/dst
ports and protocol. When a packet comes in, we identify the
flow it belongs to (or create a new entry) and increment the
amount of bytes sent. 3) Based on the flow information,
the packet modifier sets the packet’s priority by modifying the
DSCP field in the IP header to the corresponding value.

In certain cases, applications may build persistent
TCP connections to keep delivering request-response short
messages for a long time. In such scenarios, PIAS should
provide message-level rather than connection-level prioritiza-
tion. Otherwise, these persistent connections will eventually be
assigned to the lowest priority due to the large cumulative size
of bytes sent. To address this challenge, we monitor TCP send
buffer instead of modifying applications [14] to get messages
semantics. In our implementation, we add a JPROBE hook to
TCP_SENDMSG function and record its per-flow called times.
If the time gap since the last function call is larger than
a threshold (500us in our experiments) and the TCP send

2The shortest period to collect enough flow information to form an accurate
and reliable flow size distribution is an interesting research problem, which
we leave as future work. Previous reported distributions [11], [16], [29] are
all collected over periods of at least days.

3The traffic load used in §V can be calculated by λ ·E[M ], where E[M ] is
the average flow size given F (·).

buffer is empty now, we regard this as the beginning of a
new message and reset bytes sent back to 0. We find that this
simple solution works well in the testbed experiments.

Offloading techniques like large segmentation offload (LSO)
may degrade the accuracy of packet tagging. With LSO,
the packet tagging module may not be able to set the
right DSCP value for each individual MTU-sized packet
within a large segment. To quantify this, we sample more
than 230,000 TCP segments with payload data in our 1G test-
bed and find that the average segment size is only 7,220 Bytes.
This introduces little impact on packet tagging. We attribute
this to the small window size in DCN environment which has
small bandwidth-delay product and large number of concurrent
connections. We expect that the final implementation solution
for packet tagging should be in NIC hardware to permanently
avoid this interference.

To quantify system overhead introduced by the PIAS
packet tagging module, we installed it on a Dell PowerEdge
R320 server with a Intel 82599EB 10GbE NIC and measured
CPU usage. LSO is enabled in this experiment. We started
8 TCP long flows and achieved ∼9.4Gbps goodput. The extra
CPU usage introduced by PIAS is < 1% compared with the
case where the PIAS packet tagging module is not enabled.

In the near future, link speed in data centers may
reach 100Gbps. In such high speed networks, people may
offload network stacks to hardware to reduce CPU overhead
and processing latency. Despite the above software implemen-
tation, the PIAS packet tagging module can also be imple-
mented in hardware, such as programmable NICs and FPGA.

2) Switch Configuration: We enforce strict priority queues
at the switches and classify packets based on the DSCP field.
Similar to previous work [11], [44], we use ECN marking
based on the instant queue lengths with a single marking
threshold. In addition to the switch queueing delay in the
network, the sender’s NIC also introduces latency because it is
actually the first contention point of the fabric [13], [26]. Hard-
ware and software queues at the end hosts can introduce large
queueing delay, which might severely degrade the application
performance [25], [45]. To solve this problem, our software
solution hooks into the TX datapath at POST_ROUTING and
rate-limits outgoing traffic at the line rate. Then, we perform
ECN marking and priority queueing at the end host as well as
the switches.

Per-Queue vs Per-Port ECN Marking: We observe that some
of today’s commodity switching chips offer multiple ways
to configure ECN marking when configured to use multiple
queues per port.

For example, our Broadcom BCM#56538-based switch
allows us to enable either per-queue ECN marking or per-
port ECN marking. In per-queue ECN marking, each queue
has its own marking threshold and performs ECN marking
independently to other queues. In per-port ECN marking, each
port is assigned a single marking threshold and marks packets
when the sum of all queue sizes belong to the port exceeds
the marking threshold.

Per-queue ECN is widely used in many DCN transport
protocols [11], [31], [39], however, we find it has limitation
when supporting multiple queues. Each queue requires a



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAI et al.: PIAS: PRACTICAL INFORMATION-AGNOSTIC FLOW SCHEDULING FOR COMMODITY DATA CENTERS 7

Fig. 3. Testbed Topology.

moderate ECN marking threshold h to fully utilize the link
independently (e.g., h = 20 packets for 1G and 65 packets for
10G in DCTCP [11]). Thus, supporting multiple queues may
require the shared memory be at least multiple times (e.g., 8)
the marking threshold, which is not affordable for most shal-
low buffered commodity switches. For example, our Pronto-
3295 switch has 4MB (≈2667 packets) memory shared by
384 queues (48x 1G ports with 8 queues per port). If we
set h = 20 packets as suggested above, we need over 11MB
memory in the worst case, otherwise when the traffic is bursty,
the shallow buffer may overflow before ECN takes effect.

Per-port ECN, to the best of our knowledge, has rarely
been exploited in recent DCN transport designs. Although
per-port ECN marking cannot provide ideal isolation among
queues as per-queue ECN marking, it can provide much better
burst tolerance and support a larger number of queues in
shallow buffered switches. Moreover, per-port ECN marking
can potentially mitigate the starvation problem. It can push
back high priority flows when many packets of low priority
flows get queued in the switch. Therefore, we use per-port
ECN marking.

3) Rate Control: We use Linux 3.18.11 kernel that supports
DCTCP congestion control algorithm. We further observe an
undesirable interaction between the DCTCP implementation
and our switch. The DCTCP implementation does not set
the ECN-capable (ECT) codepoint on TCP SYN packets
and retransmitted packets, following the ECN standard [38].
However, our switch drops any non-ECT packets from
ECN-enabled queues, when the instant queue length is larger
than the ECN marking threshold. This problem severely
degrades the TCP performance [44]. To address this problem,
we set ECT on every TCP packet at the packet modifier.

B. Testbed Setup

We built a small testbed that consists of 16 servers con-
nected to a Pronto 3295 48-port Gigabit Ethernet switch with
4MB shared memory, as shown in Figure 3. Our switch sup-
ports ECN and strict priority queuing with at most 8 class of
service queues [1]. Each server is a Dell PowerEdge R320 with
a 4-core Intel E5-1410 2.8GHz CPU, 8G memory, a 500GB
hard disk, and a Broadcom BCM5719 NetXtreme Gigabit
Ethernet NIC. Each server runs Debian 7.8-64bit with Linux
3.18.11 kernel. By default, advanced NIC offload mechanisms
are enabled to reduce the CPU overhead. The base round-trip
time (RTT) of our testbed is around 135us.

In addition, we have also built a smaller 10G testbed for
measuring the end host queueing delay in high speed network.
We connect three servers to the same switch (Pronto 3295 has

Fig. 4. Traffic distributions used for evaluation.

four 10GbE ports). Each server is equipped with an Intel
82599EB 10GbE NIC.

V. EVALUATION

We evaluate PIAS using a combination of testbed experi-
ments and large-scale ns-2 simulations. Our evaluation centers
around four key questions:

• How does PIAS perform in practice? Using realistic
workloads in our testbed experiments, we show that PIAS
reduces the average FCT of short flows by ∼29-49% with
the web search workload [11] and ∼18-34% with the data
mining workload [22] compared to DCTCP. In an applica-
tion benchmark with Memcached [6], we show that PIAS
achieves ∼28-30% lower average query completion time
than DCTCP.

• How effective are individual design components of
PIAS , and how sensitive is PIAS to parameter settings?
We show that PIAS achieves reasonable performance
even with two queues. We also demonstrate that ECN is
effective in mitigating the harmful effect of a mismatch
between the demotion thresholds and traffic, but PIAS
performs the best with the optimal threshold setting.

• Does PIAS work well even in large data
centers? Using large-scale ns-2 simulations,
we show that PIAS scales to multi-hop topologies
and performs best among all information-agnostic
schemes (DCTCP [11], L2DCT [32], and LAS [37]).
PIAS shows a 1.1% performance (measured in average
FCT) gap from pFabric [13], an idealized information-
aware scheme, for short flows in the data mining
workload.

A. Testbed Experiments

Setting: PIAS uses 8 priority queues by default and enables
per-port ECN marking as discussed in §IV. Given the base
RTT is only 135us, we set the ECN marking threshold
to 20KB. As previous work [11], [40] suggests, we set TCP
RTOmin to 10ms. The TCP initial window is 10 packets.
We choose the demotion thresholds according to the guidelines
in §III-C.

We use two realistic workloads, a web search workload [11]
and a data mining workload [22], based on measurement from
production data centers. Their overall flow size distributions
are shown in Figure 4. We also evaluate PIAS using an
application benchmark with Memcached [6].

Results With Realistic Workloads: For this experiment,
we develop a client/server model4 to generate realistic

4https://github.com/HKUST-SING/TrafficGenerator



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 5. Overall average flow completion times for both workloads. (a) Web
search workload. (b) Data mining workload.

workloads and measure the FCT on application layer. The
client application, running on 1 machine, initially opens
5 persistent TCP connections to each of the rest 15 machines.
During the experiment, the client application generates
requests through available connections (if no connection is
available, the client application will establish a new persistent
connection) to fetch data based on a Poisson process. The
request sizes are drawn from Figure 4. The server applications,
running on 15 other machines, respond with requested data.
Hence, a TCP connection can carry multiple flows (messages).
We evaluate the performance of PIAS, DCTCP and TCP, while
varying the network loads from 0.5 to 0.8. We run 10000 flows
for each setting.

Figure 5 gives the overall average FCT for the web search
workload and the data mining workload at various loads.
In general, PIAS delivers the best performance. In the web
search workload, the overall average FCT with PIAS is up
to 6.5% lower compared to DCTCP and 10.2% lower com-
pared to TCP. In the data mining workload, PIAS reduces the
overall average FCT by up to 1.2% and 11.2% compared to
DCTCP and TCP, respectively.

We further break down FCT across different flow sizes.
Figure 6 and Figure 7 show the FCT across small (0,100KB]
(a, b), medium (100KB,10MB] (c), and large (10MB,∞)
(d) flows, respectively; for the web search and data mining
workloads, respectively.

We make the following three observations. First, PIAS
achieves the best performance for small flows. Compared to
DCTCP, PIAS reduces the average FCT of small flows by
∼29-49% for web search workload and ∼18-34% for data
mining workload. The improvement of PIAS over DCTCP
in the 99th percentile FCT of short flows is also obvious:
∼37-62% for the web search workload and ∼15-31% for
the data mining workload. Second, PIAS also provides the
best performance for medium flows. It achieves up to 20%
lower average FCT of medium flows than DCTCP for the
web search workload. Third, PIAS does not severely penalize
large flows. For example, from Figure 6 (d) and Figure 7 (d),
we can see that for the data mining workload PIAS is com-
parable or slightly better than TCP and DCTCP, while for the
web search workload it is worse than DCTCP by up to 21%.
This is expected because PIAS prioritizes short flows over long
flows and ∼ 60% of all bytes in the web search workload
are from flows smaller than 10MB. Note that the performance
degradation of large flows would not affect the overall average

FCT since data center workloads are dominated by small and
medium flows.

Results With the Memcached Application: To assess how
PIAS improves the performance of latency-sensitive applica-
tions, we build a Memcached [6] cluster with 16 machines.
One machine is used as a client and the other 15 are used
as servers to emulate a partition/aggregate soft-real-time
service [11], [43]. We pre-populate server instances
with 4B-key, 1KB-value pairs. The client sends a GET
query to all 15 servers and each server responds with a
1KB value. A query is completed only when the client
receives all the responses from the servers. We measure
the query completion time as the application performance
metric. Since a 1KB response can be transmitted within
one RTT, the query completion time is mainly determined by
the tail queueing delay. The base query completion time is
around 650us in our testbed. We also generate background
traffic, a mix of mice flows and elephant flows following the
distribution of the web search workload [11]. We use queries
per second, or qps, to denote the application load. We vary the
load of the background traffic from 0.5 to 0.8 and compare
the performance of PIAS with that of DCTCP.

Figure 8 and Figure 9 show the results of the query comple-
tion time at 20 and 40 qps loads respectively. Since we enable
both dynamic buffer management and ECN at the switch,
none of queries suffers from TCP timeout. With the increase
in background traffic load, the average query completion
time of DCTCP also increases (1016–1189us at 40qps and
1014–1198us at 20qps). By contrast, PIAS maintains a rel-
atively stable performance. At 0.8 load, PIAS can achieve
∼28-30% lower average query completion times than those
of DCTCP. Moreover, PIAS also reduces the 99th percentile
query completion time by ∼20-27%. In summary, PIAS can
effectively improve the performance of the Memcached appli-
cation by reducing the queueing delay of short flows.

End Host Queueing Delay: The above experiments mainly
focus on network switching nodes. PIAS extends its switch
design to the end hosts as the sender’s NIC is actually the
first contention point of the fabric [13], [26].

To quantify this, we conduct an experiment in our 10G
setting with three servers (one sender and two receivers).
We start several (1 to 8) long-lived TCP flows from the sender
to a receiver. Then we measure RTT from the sender to the
other receiver by sending ICMP ping packets. Without PIAS,
ping packets could experience up to 6748us queueing delay
with 8 background flows. Then we deploy a 2-queue PIAS
end host scheduling module (as described in §IV-A2) with
a threshold of 100KB. Each ICMP packet is identified as a
new flow by PIAS. We measure the RTTs with PIAS and
compare them with the results without PIAS in Figure 10.
In general, PIAS can significantly reduce the average RTT to
∼200us and ensure that the 99th percentile RTT is smaller
than 450us. Note that the PIAS scheduling module does
not affect network utilization and large flows still maintain
more than 9Gbps goodput during the experiment. Since we
enable LSO to reduce CPU overhead, it is difficult for us
to achieve fine-grained transmission control and some delay
may still exist in NIC’s transmission queues. We believe



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAI et al.: PIAS: PRACTICAL INFORMATION-AGNOSTIC FLOW SCHEDULING FOR COMMODITY DATA CENTERS 9

Fig. 6. Web search workload: FCT across different flow sizes. TCP’s performance is outside the plotted range of (b). (a) (0,100KB]: Avg.
(b) (0,100KB]: 99th Percentile. (c) (100KB,10MB]: Avg. (d) (10MB,∞): Avg.

Fig. 7. Data mining workload: FCT across different flow sizes. TCP’s performance is outside the plotted range of (a) and
(b). (a) (0,100KB]: Avg. (b) (0,100KB]: 99th Percentile. (c) (100KB,10MB]: Avg. (d) (10MB,∞): Avg.

Fig. 8. Query completion times at 20 qps. (a) Mean. (b) 99th Percentile.

Fig. 9. Query completion times at 40 qps. (a) Mean. (b) 99th Percentile.

there is still room to improve by offloading the scheduling to
NIC hardware [36].

B. PIAS Deep Dive

In this section, we conduct a series of targeted experiments
to answer the following three questions:

• How sensitive is PIAS to the number of queues
available? Network operators may reserve some queues

Fig. 10. RTT with background flows. (a) Mean. (b) 99th Percentile.

for other usage while some commodity switches [3] only
support 2 priority queues. We find that, even with only
2 queues, PIAS still effectively reduces the FCT of short
flows. However, in general, more queues can further
improve PIAS’s overall performance.

• How effective is ECN in mitigating the mismatch?
ECN is integrated into PIAS to mitigate the mismatch
between the demotion thresholds and traffic distribution.
In an extreme mismatch scenario, we find that without
ECN, PIAS’s performance suffers with medium flows
and is worse than DCTCP. However, with ECN, PIAS
effectively mitigates this problem, and is better than, or at
least comparable to DCTCP.

• What is the effect of the optimal demotion thresholds?
Compared to PIAS with thresholds derived from simple
heuristics, PIAS with the optimal demotion thresholds
achieves up for ∼8.3% improvement in medium flows,
which improves the overall performance.

Impact of Number of Queues: In general, the more queues
we use, the better we can segregate different flows, thus



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 11. Web search workload with different numbers of queues.
(a) (0,100KB]: Avg. (b) (100KB,10MB]: Avg.

Fig. 12. Web search workload with mismatch thresholds derived from data
mining workload. (a) (0,100KB]: Avg. (b) (100KB,10MB]: Avg.

improving overall performance. For this experiment, we gener-
ate traffic using the web search workload and do the evaluation
with 2, 4 and 8 priority queues. The results are shown
in Figure 11. We observe that three schemes achieve the
similar average FCT for short flows. As expected, the average
FCT of medium flows improves with the increasing number
of queues. For example, at 80% load, PIAS with 4 queues and
8 queues provide similar performance, but improve the FCT by
14.5% compared to 2 queues. The takeaway is that PIAS can
effectively reduce FCT of short flows even with 2 queues and
more queues can further improve PIAS’s overall performance.

Effect of ECN Under Thresholds–Traffic Mismatch: We use
the web search workload for evaluation while choosing the
demotion thresholds derived from the data mining workload.
We consider PIAS, PIAS without ECN, and DCTCP. Figure 12
shows the FCT results of short and medium flows. Both
PIAS and PIAS without ECN greatly outperforms DCTCP for
short flows. PIAS is slightly better than PIAS without ECN
since it can efficiently reduce the switch buffer occupancy
when many small flows collide in the highest priority queue.
Furthermore, PIAS without ECN generally delivers the worst
performance for medium flows. This is because, due to the
threshold mismatch, medium and large flows coexist in low
priority queues for long time. Without ECN, medium flows
would experience large queueing delay and packet drops due
to the impact of large flows. With ECN, PIAS effectively
mitigates this side-effect by keeping low buffer occupancy as
explained in §III-B2.

Impact of Demotion Thresholds: To explore the effective-
ness of our optimal demotion threshold setting, we compare
the optimized PIAS with the PIAS using thresholds derived

Fig. 13. Web search workload with different thresholds. (a) (0,100KB]: Avg.
(b) (100KB,10MB]: Avg.

from the equal split heuristic as [13]. More specifically, given
a flow size distribution and K queues, we set the first threshold
to the size of 100/Kth percentile flow, the second threshold
to the size of 200/Kth percentile flow, and so on. We run the
web search workload at 80% load and summarize results in
the Figure 13. We test PIAS with 2 and 4 queues. We observe
that there is an obvious improvement in the average FCT
of medium flows with the optimized thresholds. Specifically,
PIAS (4-queue) with the optimized thresholds can achieve
∼8.3% lower FCT for medium flows than that of equal
split, and a ∼5.8% improvement for the 2-queue PIAS. This
partially validates the effectiveness of our optimal threshold
setting.

C. Large-Scale NS-2 Simulations

We use ns-2 [9] simulations to answer four questions.
• How does PIAS perform compared to information-

agnostic schemes? PIAS outperforms DCTCP [11] and
L2DCT [32] in general, and significantly improves their
average FCTs for short flows by up to 50%. Furthermore,
PIAS is close to LAS for short flows and greatly outper-
forms LAS for long flows, reducing its average FCT by
up to 55% for the web search workload.

• How does PIAS perform compared to information-
aware schemes? As a practical information-agonistic
scheme, PIAS can also deliver comparable performance
to a clean-slate information-aware design, pFabric [13],
in certain scenarios. For example, it only has a 1.1% gap
to pFabric for short flows in the data mining workload.

• How does PIAS perform in the oversubscribed
network? In a 3:1 oversubscribed network with ECMP
load balancing, PIAS still delivers very good perfor-
mance. Compared to DCTCP, the average FCT for the
short flows with PIAS is up to ∼ 57% lower for the web
search workload.

• How does PIAS perform in the heterogeneous
workload? We create a heterogeneous traffic pattern
where different links have different flow size distribu-
tions. Under such challenging traffic pattern, PIAS still
obviously outperforms DCTCP.

Setting: We use a leaf-spine topology with 9 leaf (ToR)
switches, 4 spine (Core) switches and 144 hosts. Each leaf
switch is connected to 16 hosts using 10Gbps links and
4 spine switches using 40Gbps links, thus forming a non-
oversubscribed network. The base end-to-end round-trip time



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAI et al.: PIAS: PRACTICAL INFORMATION-AGNOSTIC FLOW SCHEDULING FOR COMMODITY DATA CENTERS 11

Fig. 14. Overall average flow completion times. (a) Web search workload.
(b) Data mining workload.

Fig. 15. Web search workload: FCT. (a) (0,100KB]: Avg. (b) (10MB,1):
Avg.

across the spine (4 hops) is 85.2μs. We use packet spray-
ing [19] for load balancing and disable dupACKs to avoid
packet reordering. The TCP initial window is 70 packets,
which is approximately equal to the bandwidth-delay prod-
uct (BDP). The ECN marking threshold is 65 packets. For
pFabric, each switch port has 210KB (∼ 2 × BDP ) buffer.
For the other schemes, each switch port has 360KB buffer
that is completely shared by all the queues. The TCP RTOmin
is 250μs (∼ 3 × RTT ) for pFabric and 2ms for the others.
The traffic is generated similarly to our testbed experiments
(§V − A). We open persistent connections between each pair
of hosts. Flows arrive according to a Poisson process and
their sources and destinations are chosen randomly among
144 hosts. Same as §V −A, the flow sizes are drawn from the
web search and data mining distributions in Figure 4. We run
100000 flows for each simulation.

1) Comparison With Information-Agnostic Schemes: We
mainly compare PIAS with three other information-agnostic
schemes: DCTCP, L2DCT [32] and LAS [37] (pFabric using
bytes sent as the priority).

Overall Performance: Figure 14 shows the average FCT of
information-agnostic schemes under different workloads and
load levels. From the figure, we see that PIAS delivers the
best overall performance. By contrast, the performance of LAS
is varied. PIAS significantly outperforms LAS by 37% (at
90% load) for the web search workload. This is because PIAS
effectively mitigates the starvation between long flows unlike
LAS. In the data mining workload, there are not so many large
flows on the same link concurrently. As a result, LAS does
not suffer from starvation as significantly.

Breakdown by Flow Size: We now breakdown the average
FCT across different flow sizes: (0, 100KB] and (10MB, ∞)
(Figure 15 and 16).

Fig. 16. Data mining workload: FCT. (a) (0,100KB]: Avg. (b) (10MB,∞):
Avg.

Fig. 17. Average FCT for (0,100KB]. (a) Web search workload. (b) Data
mining workload.

For short flows in (0,100KB], we find that PIAS signifi-
cantly outperforms both DCTCP and L2DCT, improving the
average FCT by up to ∼ 50%. This is because DCTCP and
L2DCT use reactive rate control at the end host, which is
not so effective as in-network prioritization used by PIAS.
We further observe that PIAS achieves similar performance as
LAS for short flows. PIAS only performs slightly worse than
LAS for the web search workload when some packets from
short flows get dropped.

For long flows in (10MB,∞), we find that PIAS significantly
outperforms LAS for the web search workload (55% reduction
in FCT at 90% load). This is because, in the web search
workload, multiple large flows are likely to collide in the same
link. In such scenarios, LAS always stops older flows to send
new flows. This causes a serious starvation problem as large
flows usually take very long times to finish. However, with
PIAS, large flows receive their fair shares in the lowest pri-
ority queue, thus mitigating this problem. Furthermore, PIAS
slightly outperforms DCTCP and L2DCT for both workloads.
We note that L2DCT is marginally worse than DCTCP for
large flows. We think this is due to L2DCT’s slower window
increase in the congestion avoidance phase.

2) Comparison With Ideal Information-Aware Schemes:
We compare PIAS to an ideal information-aware approach
for DCN transport, pFabric [13], on small flows of the two
workloads. We note that the most recent work PASE [31]
can achieve better performance than pFabric in particular
scenarios (e.g., very high load and single rack). However in our
topology setting with realistic workloads, pFabric is better than
PASE and PDQ [24], and achieves near-optimal performance.
Thus, we directly compare PIAS with pFabric.

The result is shown in Figure 17. In general, PIAS deliv-
ers comparable average FCT for short flows as pFabric,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 18. Web search workload in a 3:1 oversubscribed network with ECMP
load balancing. (a) Overall: Avg. (b) (0,100KB]: Avg.

particularly within 1.1% in the data mining workload. We find
that the gap between PIAS and pFabric is smaller in the data
mining workload than that in the web search workload. This is
mainly due to the fact that the data mining workload is more
skewed than the web search workload. Around 82% flows in
data mining are smaller than 100KB, while only 54% of flows
in web search are smaller than 100KB. For the web search
workload, it is more likely that large flows coexist with short
flows in the high priority queues temporarily, increasing the
queueing delay for short flows. pFabric, by assuming prior
knowledge of flow sizes, is immune to such problem.

3) Performance in Oversubscribed Networks: We evaluate
PIAS in a 3:1 oversubscribed network and employ ECMP
for fabric load balancing. In this network, there are 12 leaf
switches, 4 spine switches and 144 hosts. Each leaf switch
is connected to 12 hosts and 4 spine switches with 10Gbps
links. Given the source and destination of flows are chosen
randomly, 11

12 of all traffic traverses the spine. Hence, the load
at the fabric’s core is 11

12 × 3 = 2.75 larger than the load at
the edge. Figure 18 gives the results of PIAS and DCTCP for
the web search workload. Note that the load in the figure is
at the fabric’s core. Compared to DCTCP, PIAS achieves up
to ∼ 57% and ∼ 12% lower average FCT for short flows and
all the flows, respectively.

4) Performance With Heterogeneous Traffic: In previous
simulations, sizes of all flows are drawn from the same
distribution. As a result, all the links should have the same flow
size distribution. In this simulation, we create a heterogeneous
traffic pattern instead. As we have 144 hosts, we have
144 × 143 host pairs in total. The sources and destinations
of flows are chosen randomly. For flows from host i to j,5

their sizes are drawn from either the web search workload if
i < j or the data mining workload. Consequently, the flow
size distribution varies across different links. As PIAS uses a
common set of demotion thresholds (based on traffic of entire
DCN) for all end hosts, it cannot capture traffic variations
in different links under such heterogeneous traffic pattern.
We evaluate the performance of PIAS (using demotion
thresholds derived for the web search workload) and DCTCP
under such heterogeneous traffic pattern. As Figure 19 shows,
compared to DCTCP, PIAS achieves up to ∼ 48% and
∼ 8.1% lower average FCT for short flows and all the flows,
respectively. This demonstrates the robustness of PIAS in
large-scale production data center networks.

5i and j are host IDs.

Fig. 19. Heterogeneous traffic pattern: FCT. (a) Overall: Avg. (b) (0,100KB]:
Avg.

VI. RELATED WORK

We classify prior work on minimizing FCT in DCNs into
two categories: information-agnostic solutions (e.g., [11], [12],
[30], [32], [47]) and information-aware solutions (e.g., [13],
[24], [31]).

Information-agnostic solutions [11], [12], [30], [32], [47]
generally improve the FCT for short flows by keeping low
queue occupancy. For example, DCTCP [11] and DCQCN [47]
try to keep the fabric queues small by employing ECN-based
adaptive congestion control algorithms to throttle elephant
flows. HULL [12] further improves the latency of DCTCP
at the cost of trading network bandwidth. In summary, these
solutions mainly perform end-host based rate control which
is ineffective for flow scheduling. By contrast, PIAS leverages
in-network priority queues to emulate SJF for flow scheduling,
which is more efficient in terms of FCT minimization.

Information-aware solutions [13], [24], [31] attempt
to approximate ideal Shortest Remaining Processing
Time (SRPT) scheduling. For example, PDQ [24] employs
switch arbitration and uses explicit rate control for flow
scheduling. pFabric [13] decouples flow scheduling from rate
control and achieves near-optimal FCT with decentralized
in-network prioritization. PASE [31] synthesizes the strengths
of previous solutions to provide good performance. In general,
these solutions can potentially provide ideal performance, but
they require non-trivial modifications on switch hardware or a
complex control plane for arbitration. By contrast, PIAS does
not touch the switch hardware or require any arbitration in
the control plane, while still minimizing FCT.

There are also some other efforts [18], [39], [43] focusing on
meeting flow deadlines. D3 [43] assigns rates to flows accord-
ing to their sizes and deadlines explicitly, whereas D2TCP [39]
and MCP [18] add deadline-awareness to ECN-based con-
gestion window adjustment implicitly. They all require prior
knowledge of flow information and do not directly minimize
FCT, unlike PIAS.

To achieve diverse scheduling goals, some generic schedul-
ing architectures [21], [34] haven been proposed recently.
In theory, we can also leverage these architectures to enforce
MLFQ scheduling policy. In practice, it is challenging to
deploy these architectures in large-scale production data cen-
ters. For example, Fastpass [34] uses a centralized scheduler,
which suffers from failures and centralized scheduling over-
heads. pHost [21] requires the core of the underlaying network



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAI et al.: PIAS: PRACTICAL INFORMATION-AGNOSTIC FLOW SCHEDULING FOR COMMODITY DATA CENTERS 13

is congestion-free, which may not hold in practice [35].
By contrast, PIAS is easy to deploy in production data centers
since it just leverages features of commodity switches without
extra requirements.

VII. CONCLUSION

In this paper, we introduced PIAS, a solution that exploits
existing commodity switches in DCNs to minimize the average
FCT for flows, especially the smaller ones, without assuming
any prior knowledge of flow sizes. We have implemented a
PIAS prototype using all commodity hardware and evaluated
PIAS through a series of small-scale testbed experiments as
well as large-scale packet-level ns-2 simulations. Both our
implementation and evaluation results demonstrate that PIAS
is a viable solution that achieves all our design goals.

REFERENCES

[1] Pica8 OS. [Online]. Available: http://www.pica8.com/documents/pica8-
datasheet-picos.pdf

[2] Apache Storm. [Online]. Available: https://storm.incubator.apache.org/
[3] Cisco Nexus 5500 Series NX-OS Quality of Service Configuration Guide.

[Online]. Available: http://www.cisco.com/c/en/us/td/docs/switches/
datacenter/nexus5500/sw/qos/7x/b5500QoSConfig7x.pdf

[4] Hadoop. [Online]. Available: http://hadoop.apache.org/
[5] Linux Netfilter. [Online]. Available: http://www.netfilter.org
[6] Memcached. [Online]. Available: http://memcached.org/
[7] Microsoft SQL Server. [Online]. Available: http://www.microsoft.com/

en-us/server-cloud/products/sql-server/
[8] OpenStack Object Storage. [Online]. Available: http://docs.openstack.

org/api/openstack-object-storage/1.0/content/chunked-transfer-
encoding.html

[9] The Network Simulator NS-2. [Online]. Available: http://www.isi.edu/
nsnam/ns/

[10] M. Alizadeh et al., “CONGA: Distributed congestion-aware load bal-
ancing for datacenters,” in Proc. SIGCOMM, 2014, pp. 503–514.

[11] M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. SIGCOMM,
2010, pp. 63–74.

[12] M. Alizadeh et al., “Less is more: Trading a little bandwidth for ultra-
low latency in the data center,” in Proc. NSDI, 2012, p. 19.

[13] M. Alizadeh et al., “pFabric: Minimal near-optimal datacenter transport,”
in Proc. SIGCOMM, 2013, pp. 435–446.

[14] H. Ballani et al., “Enabling end-host network functions,” ACM
SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 493–507, 2015.

[15] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. IMC, 2010, pp. 267–280.

[16] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data
center traffic characteristics,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 1, pp. 92–99, 2010.

[17] J. Cao et al., “Per-packet load-balanced, low-latency routing for clos-
based data center networks,” in Proc. CoNEXT, 2013, pp. 49–60.

[18] L. Chen, S. Hu, K. Chen, H. Wu, and D. H. K. Tsang, “Towards
minimal-delay deadline-driven data center TCP,” in Proc. HotNets, 2013,
Art. no. 21.

[19] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On the impact
of packet spraying in data center networks,” in Proc. IEEE INFOCOM,
2013, pp. 2130–2138.

[20] R. Fielding et al., Hypertext Transfer Protocol–HTTP/1.1, docu-
ment RFC 2616, 1999.

[21] P. X. Gao et al., “pHost: Distributed near-optimal datacenter transport
over commodity network fabric,” in Proc. CoNEXT, 2015, Art. no. 1.

[22] A. Greenberg et al., “VL2: A scalable and flexible data center network,”
in Proc. SIGCOMM, 2009, pp. 51–62.

[23] K. He et al., “Presto: Edge-based load balancing for fast datacenter
networks,” in Proc. SIGCOMM, 2015, pp. 465–478.

[24] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with
preemptive scheduling,” in Proc. SIGCOMM, 2012, pp. 127–138.

[25] K. Jang, J. Sherry, H. Ballani, and T. Moncaster, “Silo: Predictable
message completion time in the cloud,” Univ. California, Berkeley, CA,
USA, Tech. Rep. MSR-TR-2013-95, 2013.

[26] V. Jeyakumar et al., “EyeQ: Practical network performance isolation at
the edge,” in Proc. NSDI, 2013, pp. 297–312.

[27] E. Jones, T. Oliphant, and P. Peterson, “SciPy: Open source scientific
tools for Python,” 2014.

[28] B. Kalyanasundaram and K. R. Pruhs, “Minimizing flow time nonclair-
voyantly,” J. ACM, vol. 50, no. 4, pp. 551–567, 2003.

[29] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic: Measurements & analysis,” in Proc.
9th ACM SIGCOMM Conf. Internet Meas. Conf., 2009, pp. 202–208.

[30] R. Mittal et al., “TIMELY: RTT-based congestion control for the
datacenter,” in Proc. SIGCOMM, 2015, pp. 537–550.

[31] A. Munir et al., “Friends, not foes: Synthesizing existing trans-
port strategies for data center networks,” in Proc. SIGCOMM, 2014,
pp. 491–502.

[32] A. Munir et al., “Minimizing flow completion times in data centers,” in
Proc. IEEE INFOCOM, 2013, pp. 2157–2165.

[33] Y. Peng et al., “Hadoopwatch: A first step towards comprehensive
traffic forecasting in cloud computing,” in Proc. IEEE INFOCOM, 2014,
pp. 19–27.

[34] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A centralized ‘zero-queue’ datacenter network,” in Proc.
SIGCOMM, 2014, pp. 307–318.

[35] L. Popa et al., “ElasticSwitch: Practical work-conserving band-
width guarantees for cloud computing,” in Proc. SIGCOMM, 2013,
pp. 351–362.

[36] S. Radhakrishnan et al., “SENIC: Scalable NIC for end-host rate
limiting,” in Proc. NSDI, vol. 14. 2014, pp. 475–488.

[37] I. A. Rai, G. Urvoy-Keller, M. K. Vernon, and E. W. Biersack,
“Performance analysis of LAS-based scheduling disciplines in a packet
switched network,” in Proc. SIGMETRICS, 2004, pp. 106–117.

[38] K. Ramakrishnan, S. Floyd, and D. Black, The Addition of Explicit
Congestion Notification (ECN) to IP, document RFC 3168, 2001.

[39] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter
TCP (D2TCP),” in Proc. SIGCOMM, 2012, pp. 115–126.

[40] V. Vasudevan et al., “Safe and effective fine-grained TCP retransmissions
for datacenter communication,” in Proc. SIGCOMM, 2009, pp. 303–314.

[41] D. J. Wales and J. P. Doye, “Global optimization by basin-hopping and
the lowest energy structures of Lennard-Jones clusters containing up to
110 atoms,” J. Phys. Chem. A, vol. 101, no. 28, pp. 5111–5116, 1997.

[42] D. J. Wales and H. A. Scheraga, “Global optimization of clusters,
crystals, and biomolecules,” Science, vol. 285, no. 5432, pp. 1368–1372,
1999.

[43] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better
never than late: Meeting deadlines in datacenter networks,” in Proc.
SIGCOMM, 2011, pp. 50–61.

[44] H. Wu et al., “Tuning ECN for data center networks,” in Proc. CoNEXT,
2012, pp. 25–36.

[45] Y. Xu, M. Bailey, B. Noble, and F. Jahanian, “Small is better:
Avoiding latency traps in virtualized data centers,” in Proc. SOCC, 2013,
Art. no. 7.

[46] M. Yu et al., “Profiling network performance for multi-tier data center
applications,” in Proc. NSDI, 2011, pp. 57–70.

[47] Y. Zhu et al., “Congestion control for large-scale RDMA deployments,”
in Proc. SIGCOMM, 2015, pp. 523–536.

Wei Bai received the B.E. degree in information
security from Shanghai Jiao Tong University, China,
in 2013. He is currently pursuing the Ph.D. degree
in computer science with The Hong Kong University
of Science and Technology. His current research
interests are in the area of data center networks.

Li Chen received the B.E. degree (Hons.) in elec-
tronic and computer engineering with a minor
in mathematics and the M.Phil. degree from The
Hong Kong University of Science and Technol-
ogy (HKUST) in 2011 and 2013, respectively.
He is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineering,
HKUST. He is involved in topics in data center
networking, under the supervision of Prof. K. Chen.
He is currently a Microsoft Research Asia Ph.D.
Fellow.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

Kai Chen received the Ph.D. degree in computer
science from Northwestern University, Evanston, IL,
USA, in 2012. He is currently an Assistant Profes-
sor with the Department of Computer Science and
Engineering, The Hong Kong University of Science
and Technology, Hong Kong. His research interest
includes networked systems design and implemen-
tation, data center networks, and cloud computing.

Dongsu Han received the B.S. degree in computer
science from the Korea Advanced Institute of Sci-
ence (KAIST) in 2003, and the Ph.D. degree in
computer science from Carnegie Mellon University
in 2012. He is currently an Assistant Professor
with the School of Electrical Engineering, Gradu-
ate School of Information Security, KAIST. He is
interested in networking, distributed systems, and
network/system security.

Chen Tian received the B.S., M.S., and Ph.D.
degrees from the Department of Electronics and
Information Engineering, Huazhong University of
Science and Technology, China, in 2000, 2003. and
2008, respectively. He was an Associate Professor
with the School of Electronics Information and
Communications, Huazhong University of Science
and Technology. From 2012 to 2013, he was a Post-
Doctoral Researcher with the Department of Com-
puter Science, Yale University. He is currently an
Associate Professor with the State Key Laboratory

for Novel Software Technology, Nanjing University, China. His research inter-
ests include data center networks, network function virtualization, distributed
systems, Internet streaming an urban computing.

Hao Wang received the B.E. and M.E. degrees
from Shanghai Jiao Tong University, in 2012 and
2015, respectively. He is currently pursuing the
Ph.D. degree with the University of Toronto. He
was a Research Assistant with The Hong Kong Uni-
versity of Science and Technology for 14 months.
His research interests include datacenter network-
ing, distributed computing, and software defined
networking.


