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Abstract—In the data flow models of today’s data center
applications such as MapReduce, Spark and Dryad, multiple
flows can comprise a coflow group semantically. Only completing
all flows in a coflow is meaningful to an application. To optimize
application performance, routing and scheduling must be jointly
considered at the level of a coflow rather than individual flows.
However, prior solutions have significant limitation: they only
consider scheduling, which is insufficient.

To this end, we present RAPIER, a coflow-aware network
optimization framework that seamlessly integrates routing and
scheduling for better application performance. Using a small-
scale testbed implementation and large-scale simulations, we
demonstrate that RAPIER significantly reduces the average
coflow completion time (CCT) by up to 79.30% compared to
the state-of-the-art scheduling-only solution, and it is readily
implementable with existing commodity switches.

I. INTRODUCTION

Cluster computing frameworks such as MapReduce [1],
Dryad [2], Spark [3] and so on have become the mainstream
platforms for data processing and analysis in today’s cloud
services. A common feature of these different computing
paradigms is that they all implement a data flow computing
model, in which a group of data flows need to pass through a
sequence of intermediate processing stages before generating
the final results. These intermediate flow transfers can account
for more than 50% of job completion time [4], and have a
significant impact on job performance. Therefore, optimizing
such flow transfers is important for applications.

The term coflow is defined as the set of all flows transferring
data between two stages of a job [5]. To optimize application
performance, we need to optimize flow transfers at the level
of coflow rather than individual ones. This is because the job
completion time depends on the time it takes to complete the
entire coflow, instead of the time to complete individual flows
composing it. For example, in MapReduce [1] and BSP [6],
a stage cannot complete, or sometimes even start, before it
receives all the flows in a coflow from the previous stage.
From an application’s perspective, when a stage is pending for
the input data, the CPU often sits idle or is under-utilized. As a
result, reducing the coflow completion time (CCT) can further
improve CPU utilization, maximizing application performance
and job throughput in a given time period.

To minimize average CCT, both routing and scheduling
must be considered simultaneously (see Section II for details).

*This work was performed when Yangming Zhao was an intern student at
the SING Group of HKUST under supervision of Prof. Kai Chen.

However, prior solutions for network flow optimization such

s [4, 7]-[13] have significant limitations (Table I): some
of them (e.g., [7]-[11]) are ineffective, because they are
coflow-agnostic that do not account for collective behaviors
of flows belonging to a coflow; existing coflow-aware so-
lutions (e.g., [4, 12, 13]) are insufficient, because although
these approaches improve by starting to consider coflow level
semantics, they only focus on scheduling while neglecting an
indispensable component—routing. We show in Section V that
this can directly lead to 63.37% performance loss.

[ Related work
pFabric [8], PDQ [9],

| Coflow-aware | Routing [ Scheduling |

Pase [10], D3 [11], etc. No No Yes
Varys [12], Baraat [13]
Orchestra [4] Yes No Yes
RAPIER Yes Yes Yes
TABLE I

SUMMARY OF PRIOR SOLUTIONS AND COMPARISON TO RAPIER

Motivated by this situation, we design and implement
RAPIER, a coflow-aware network optimization system for data
center networks (DCNs). To improve average CCT, RAPIER
seamlessly combines routing and scheduling together by for-
mulating it as a joint optimization model. This model is a
nonlinear programming and contains integer variables; it is
impossible to be directly solved. Accordingly, we propose an
efficient heuristic to approximately solve this problem based
on the relaxation of the model.

We evaluate RAPIER using a small-scale testbed implemen-
tation as well as large-scale simulations. Our evaluation results
show that RAPIER can reduce average CCT by up to 79.30%
and 60.43%, compared to the scheduling-only and routing-
only schemes respectively. Our implementation verifies that
RAPIER can be readily implementable with existing commod-
ity switches.

In summary, the main highlights of this paper include:

e« A key observation that both routing and scheduling
must be jointly considered for optimizing average CCT.
(Section II)

o A coflow-aware network optimization solution, RAPIER,
which takes into account routing and scheduling simulta-
neously for the first time. In the course of system design,
we also develop fast and efficient online algorithms
to approximately solve theoretical NP-hard problems.
(Section IIT and Section IV).
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o A real testbed implementation and extensive large-scale
simulations. (Section V)

II. A MOTIVATING EXAMPLE

In this section, we make key observations through a mo-
tivating example in Fig. 1. In this example, there are two
coflows: Coflow a has flows f,1 and fu2 with the sizes of
40Mb and 100Mb respectively; Coflow b has flows f;; and
fv2 with the sizes of 60Mb and 100Mb respectively; and the
link bandwidths are all 100Mbps. As a reference point, the
optimal average CCT of this example should be 1.3s.

The first takeaway is that scheduling alone is not sufficient
to optimize average CCT. When the routing is fixed, good
scheduling can minimize the average CCT by determining
the sequence of flows to send out traffic. Fig.1(a) shows a
case of randomized routing by equal-cost multipath (ECMP).
With a naive scheduling such as fair sharing, both coflows are
dominated by path S — M; — D hence their CCT are both 2s.
If using the optimal scheduling shown in Fig.1(d), the CCTs
for two coflows become 1s and 2s respectively; apparently,
scheduling does play a critical role. However, the average CCT
(in this routing) is only 1.5s, which still has a 0.2s gap to the
real optimal value 1.3s. It is clear that routing should also
play a critical role: the loads of two paths in Fig.1(a) are
severely unbalanced, where path S — M; — D has a traffic
load doubles that of path S — M, — D.

The second takeaway is that considering routing and
scheduling separately cannot optimize average CCT. As an
example in Fig.1(b), a load-balancing routing results in: both
flows of Coflow a are routed on S — M, — D while the
flows of Coflow b on S — M,; — D; now the network is
more balanced. However, the optimal CCTs for coflows a and
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A motivating example, where (a)~(c) show different routing schemes, and (d)~(f) show the optimal scheduling schemes for (a)~(c).

b in this case are 1.4s and 1.6s respectively (see Fig.1(e)); the
average CCT 1.5s is still not optimal. The reason is that flows
of the same coflow are routed through the same path, which
leaves little space for scheduling to take effect for reducing
the average CCT.

The conclusion is that both routing and scheduling must
be jointly considered in order to optimize average CCT. In
our example, the minimal average CCT can be achieved by
combining the routing in Fig.1(c) and scheduling in Fig.1(f).
In this case, the CCTs of two coflows are 1s and 1.6s respec-
tively, and the average CCT is minimized. This motivates our
design below.

III. DESIGN OVERVIEW

RAPIER optimizes the average CCT in data-intensive DCNs
by coordinating routing and scheduling flows in the networks.
Given each coflow with information about its individual
flows, such as flow sizes, and sources/destinations, RAPIER
determines which paths to carry these flows, when to start
them, and at what rate to serve them, in order to optimize the
average CCT of all the coflows in the networks.

Inspired by [4, 12], we design RAPIER to work in a central-
ized, cooperative manner. This decision is also coherent with
many recent centralized data center designs such as [1, 7, 14]—
[18], etc. As prior works [8, 9, 11]-[13], RAPIER assumes that
the information about a coflow can be readily derived from
upper layer applications [5] or using state-of-the-art prediction
techniques [19].

A. Desirable Properties

We identify the following goals when designing RAPIER.
o Scalability: RAPIER is necessarily an online system. Up
on a new incoming coflow, the RAPIER algorithms must



Algorithm 1: The RAPIER Framework

1: Procedure MinimizeMeanCCT(Coflows 2, Bandwidth
R)

2: Sort all the coflows in Q non-increasingly according to
their waiting time; Q* + Q

3: while Q" # @ do

4: Trin < 0, Cin <+ ®;

5: for C € Q" do

link, and derives the residual bandwidth for coflow scheduling.

We describe the coflow optimization framework of RAPIER
with Algorithm 1, which is invoked whenever a new coflow
comes or an existing coflow finishes. More specifically, when
a new coflow arrives, RAPIER is triggered to compute the
routing and the transmission rate for each individual flow
(we allow bandwidth preemption as below). When an existing
coflow finishes and network resource is released, we also need

6: Te=MinimumCCT(C, R); /* compute the minimum to trigger RAPIER to determine which coflows should take

completion time for coflow C, and the
corresponding routing and rate allocation */

7: if C.waitTime() > § then

8: Tmin < Tcs Cmin < C;
: break;

10: end if

11: if To < T),in then

12: Tmin < To, Cmin — C;

13: end if

14:  end for
15: Q* < Q* \Cmin;

up the released bandwidth. The underlying scheduling policy
RAPIER assumes is the well-known minimum remaining time
first (MRTF) [9, 12].

As the input of Algorithm 1, all the coflows that are not
completed should be included in Q. In this case, even if a
coflow is occupying the bandwidth in the network, it may
be preempted if a “smaller” coflow comes. On the other
hand, if part of a coflow is served, its remaining volume
information should be updated when we recompute the coflow
order. To prevent starvation, RAPIER prioritizes coflows which
are waiting for a time longer than a user-defined threshold to

16:  Assign all the flows in coflow C,,;,, using routing and schedule (Line 7-10). Other than that, it is the turn for the

rates computed in Line 6, and then update R;
17: end while
18: DistributeBandwidth(Q2, R); /* distribute the remaining
bandwidth for work conservation */
19: end procedure

be able to quickly and efficiently decide the routing paths,
rates, and scheduling orders for all individual flows in
the coflow. For this purpose, these algorithms must run
in real-time with low time complexity.

o Starvation-free: As RAPIER allows bandwidth preemp-
tion, we must ensure that any coflow should not starve
for an arbitrarily long period, though this might benefit
the average CCT in the network.

o Work-conserving: Work-conservation means that the net-
work resource sits idle only if there is no traffic de-
mand in the network. We require RAPIER to be work-
conserving to fully utilize network capacity and to min-
imize CCT.

o Readily deployable: The system should be readily imple-
mentable with existing commodity switches and easy to
deploy without modifying any network devices.

o Ensure coexistence: The system must be able to work
with all types of traffic. Especially, latency-sensitive
interactive traffic must be delivered without any delay.

B. RAPIER in a Nutshell

At a high level, to achieve scalability, RAPIER mainly
orchestrates large coflows of data-intensive applications, while
latency-sensitive individual flows and small coflows are treated
as background traffic; background traffic can be sent directly
and routed over the network using ECMP. A site broker
periodically predicts the usage of background traffic in each

coflow with the minimum completion time (Line 3-17). When
a coflow is selected to send, RAPIER updates the bandwidth
utilization and continues to find the next coflow with the
next minimum completion time (through Line 5-14). After
the schedule order is determined, the remaining bandwidth
is distributed to different coflows for the work-conservation
purpose (Line 18).

Note that there are two key algorithms in RAPIER. The first
one is to calculate the minimum completion time for each
coflow given the information of all individual flows in this
coflow and the network resource that can be used (Line 6).
The other one is to distribute the remaining bandwidth for
work-conservation (Line 18). Designing these two complex
algorithms is challenging.

IV. ALGORITHM DETAILS

In this section, we present the details for the two key
algorithms in RAPIER. In Section IV-A, we discuss how to
calculate the minimum completion time for a single coflow
by jointly optimizing routing and scheduling. After that, we
analyze the approximation ratio of our algorithm in Section
IV-B. In Section IV-C, we present the heuristic algorithm in
RAPIER to distribute the remaining bandwidth to flows for
work-conservation.

A. Minimize Single Coflow Completion Time

Given the information of all the flows in a coflow, such
as flow volume, source, destination, and network resource
(the residual bandwidth on each link), we can formulate the
problem to minimize the CCT of a coflow ¢ as follows:

minimize ¢;

)



Subject to:
2, V) (1a)
SN byaly <R W (1b)
J k:lep?j
Slafi=1, Vi (lc)
k
ol €{0,1}, Vik (1d)

t; in the objective is the completion time of coflow ¢, and
hence it should be minimized. Symbol v;; is the flow volume
of the jth flow in coflow i, while b;; is the bandwidth assigned
to this flow. With constraint (1a), we directly enforce that the
completion time of all the flows to equal to the CCT, since
it is reasonable to have all the flows in a coflow to have the
same completion time (aka, the bottleneck’s completion time)
in the optimum solution [4, 5, 12]. Let :rfj indicate whether
the j*" flow in coflow i uses its k' path (the link set of this
path is denoted by pfj), the left-hand term of (1b) calculate
the capacity that is used by coflow i on link /, which should
be less than the residual capacity of link I/, denoted by R;. (1¢)
and (1d) require that a flow only chooses one routing path.

It is impossible to solve problem (1) directly, since this
programming not only is nonlinear, but also has binary integer
variables. This problem is an integer multi-commodity flow
problem that is proven to be NP-hard [20]. Therefore, we
resort to designing an efficient heuristic to solve this problem.

Based on constraint (1a), we know that the rate of each flow
b;; is directly proportional to its volume v;;, i.e., b;; = o;v;;.
The larger «; means more bandwidth is obtained by flows in
coflow i, and hence the smaller completion time is required.
In fact, we have a; = 1/t;. The programming model (1) can
be modified as follows:

maximize o; 2)
Subject to:
Z Z Oéivijm?jSRl vl (2a)
I kidepl;
(le), (1d)

However, there are still binary variables a:fj in programming
model (2), which leads the problem to be intractable on large
scale systems. Therefore, we further relax the binary constraint
and obtain:

maximize o«; 3)
Subject to:
o> vijlaualy) SR W (3a)
I kilepk;
x>0 Vi (3b)

(Io)
It should be noted that there is a product of two variables
(i.e., o; and mfj) in constraint (3a). It makes the problem
difficult to solve since it is a concave optimization. To solve

this problem, variables m¥. are introduced to substitute this

ij
product and we obtain:

maximize o 4)
Subject to:
Z Z vijm?j S Rl Vi (4(1)
J k:zepfj
Somij=a; Vj (4b)
k
mi; >0 Vi (4c)

Now, problem (4) becomes a linear programming that has
only Zj n;; + 1 variables and 3L + F; constraints (n;; is the
number of candidate path for jth flow in coflow ¢, L is the
number of links, and F; is the number of flows in coflow 3).
This is a small scale linear programming and can be solved in
a timely manner. However, since we relax the binary integer
constraint, the solution may be that some zfj are decimal
factions. To solve this problem, we route the %" flow in coflow
i to a path k' such that mfj/ = maxy, mfj.

When the path of each flow is determined, i.e., :rfj is fixed,
we can go back to problem (2). We substitute in the obtained
fj values, and make (2) a linear programming problem and
solve it. Given the path of each flow, the minimum CCT is
exactly the inverse of the objective in (2).

In summary, the heuristic is: integrate scheduling and rout-
ing in the optimization together and let scheduling “guide”
the routing selection; after fixing the routing with the ap-
proximation, the optimal scheduling is then derived. The
heuristic to pursue the minimum completion time of a coflow
is summarized as Algorithm 2.

T

B. Approximation Bound Analysis

We have presented a heuristic to pursue the minimum CCT
by relaxing problem (1). In this part, we show how good the
performance of the algorithm is through theoretical analysis.

Algorithm 2: Minimize Coflow Completion Time
1: Procedure MinimumCCT(Coflow C;, Bandwidth R)
2: Solve problem (4) with coflow and network resource
utilization information

3: for all flow j in coflow C; do

4:  Initialize xfj + 0 for all &

5: k' + arg, max mfj

6: mf; —1

7. end for

8: Solve (2) by fixing xfj to be the result obtained from
Line 3-7

9: b;j <+ oyv;;5, wWhere «; is the objective in Line 8

10: ¢+ %

11: return ¢;
12: end procedure




Theorem 1: Assume the minimum CCT is t,,;, and t4;, is
the CCT obtained by Algorithm 2, then

talg < Kitmin

where K is the number of candidate paths for each flow.
Proof: To prove this theorem, the equivalent proposition
is

Omax
« >
alg = K
where agy and amas are the inverse of ¢y, and t,in,
respectively.
Assume the objective of problem (4) is cupper, there must
be

Qupper > Qmax (5)

From Algorithm 2, we route each flow to the path with

maximum mf’j, and hence we have

[
k ~, Cupper k. (6)

for any k. Substitute (6) into the constraints of problem (4),
we have

> au;?ervijﬂffj <> mguig <Ry

J kilEPlfj J k:lEplfj

Combine with the fact that the constraint (1¢) and (1d) are

guaranteed by Algorithm 2, we know that %err is a feasible

solution to problem (2) for the the given xfj It means that

Qatg 2 TP > T @)

|

It is worth noting that although the theoretical bound

is loose, in practice our implementation obtains very good
results.

C. Distribute Bandwidth for Work-conservation

In Section IV-A, RAPIER only allocates minimal band-
width to each flow, such that all the flows in a coflow
are completed simultaneously. However, there may be some
remaining bandwidth that can be used to serve more flows. We
pursue work-conserving property by distributing the remaining
bandwidth to flows in RAPIER to optimize the overall system
performance.

The key point in distributing bandwidth is how to determine
the order of flows to preempt the bandwidth. At first, for the
coflows that have already been scheduled, more bandwidth for
any flow in it cannot improve its CCT. Therefore, among all
coflows, the coflows that have not been scheduled should have
higher priority to use the remaining bandwidth; this also helps
prevent starvation. Within a coflow, we prefer to allocate more
bandwidth to the larger flows than the smaller ones. This is
because the flows with larger traffic volume are more likely
to be the bottleneck of a coflow, i.e., complete last if all the
flows are served by best-effort delivery. Based on all these
considerations, we design Algorithm 3 to distribute bandwidth
to flows for work conserving purpose.

Algorithm 3: Distribute Remaining Bandwidth

1: Procedure DistributeBandwidth(Coflows 2, Bandwidth
R)

2: Non-increasingly sort all the coflows in  in terms of
their minimal CCT

3: for all C € Q do
Non-increasingly sort all the flows in C in terms of
flow volume
for all f € © do

AssignBandwidth(f,R)

end for

end for

end procedure

&

R e AR

10: Procedure AssignBandwidth(Flow f, Bandwidth R)
11: maxBandwidth < 0

12: for All the candidate paths for f, p do

13:  pathBandwidth < oo

14:  for All the links [ € p do

15: if R; < pathBandwidth then
16: pathBandwidth < R;
17: end if

18:  end for
19:  if pathBandwidth > maxBandwidth then

20: maxBandwidth < pathBandwidth
21:  end if
22: end for

23: return mazBandwidth
24: end procedure

In Line 4, we sort the coflows non-increasingly in terms of
their minimal CCT. In this case, the coflows with infinite CCT,
i.e., that are not scheduled, can get higher priority to preempt
the bandwidth. The procedure AssignBandwidth() assign the
bandwidth to corresponding flows. Note that the procedure
AssignBandwidth() will route a flow to the path that can
provide it with the maximum bandwidth.

V. EVALUATION

We evaluate RAPIER through a small-scale testbed emula-
tion as well as large-scale simulations.

Schemes to compare: We compare the following schemes
with RAPIER.

« Baseline: all the flows are routed by ECMP and all of
them fairly compete for bandwidth.

¢ Scheduling-only (Varys): routes all the flows by ECMP
but schedules them according to MRTF, which is con-
ceptually equivalent to the state-of-the-art Varys [12].

« Routing-only: routes all the flows to pursue load balanc-
ing but all the flows should fairly compete for bandwidth.

Through comparison with the last two schemes, we can inspect
the benefits brought by the two ingredients of RAPIER: routing
and scheduling, respectively.
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Metrics: In this section, we define the performance of

scheme 1 compared to scheme 2 as CC%C%TCQCTR where CCT,
and CCT, are the average CCT derived by scheme 1 and
scheme 2, respectively. Without declaration, the performance
is compared to baseline scheme.

Summary of the main results is as follows:

o Through the experiment on the small-scale leaf-spine
testbed (Fig. 3), we can see that 48.6% and 28.22% of
the average CCT can be reduced by RAPIER, compared
to the baseline and routing-only schemes respectively.

« Results from simulations repeatedly indicate that RAPIER
can reduce the average CCT by up to 79.30%,
60.43%, 90.79%, compared to state-of-the-art scheduling-
only(e.g., Varys [12]), routing-only, and baseline schemes
in different scenarios.

o When network load changes, the performance of RAPIER
is relatively stable; as a comparison, the performances of
routing-only and scheduling-only schemes vary a lot.

o When inter-coflow arrival interval is large, RAPIER con-
sistently shows very high performance gain. However,
even if all the coflows arrive at the same time (the
smallest arrival interval), RAPIER can still achieve 53.28%
performance improvement in Fattree and 39.86% in VL2.

A. Implementation and Testbed Emulations

Implementation: The RAPIER prototype system consists of
the central controller and end host enforcement modules. For
routing enforcement we use the Software-defined Networking
(SDN) technology to enable explicit routing. For bandwidth
enforcement, we leverage Linux Traffic Control (TC) to per-
form per-flow rate limiting.

The architecture of RAPIER’s bandwidth enforcement is
shown in Fig. 2. The enforcement daemon at the user space
communicates with the kernel module via ioctl to manage the
flow table. The kernel module, locating between TCP/IP stack
and TC, intercepts all outgoing packets and modifies nfmark
field of socket buffer based on the rules in flow table. The
modified packets are then delivered to TC for rate limiting.
We leverage two-level Hierarchical Token Bucket (HTB) in
TC: the root node classifies packets to their corresponding

Ml M2 M3
Fig. 3.

M4 M5 M6 M7 M8 M9
Testbed topology.

leaf nodes based on nfmark field and the leaf nodes enforce
per-flow rates.

Testbed: We build a leaf-spine topology as shown in Fig. 3. It
interconnects 9 hosts through 3 leaf (ToR) switches connected
to 3 spine switches using 1Gbps links, resulting in a non-
blocking fabric. We use Pronto 3295 48-port Gigabit Ethernet
switch with PicOS 2.04 system that supports both Layer 2/3
and OpenFlow. Each server has a 4-core Intel E5-1410 2.8GHz
CPU, 8G memory, S00GB hard disk and 1G Ethernet NICs.
The OS of servers is Debian 6.0 64bit version with Linux
2.6.38.3 kernel. The CPU, memory or hard disk is not a
bottleneck in the experiments. We use iperf to generate TCP
flows. The base round-trip time in our testbed is around 100us.

Experiment: In our experiment, we inject 3 coflows into
the network to evaluate the performance of RAPIER. As
a comparison, we also evaluate the cases of baseline and
routing-only schemes. We do not include scheduling-only
because we cannot get the exact flow paths with ECMP on the
testbed. All the information of this experiment is summarized
in Table II. It should be noted that the performance of baseline
scheme is averaged by 20 tries, due to the randomness of
ECMP. From this experiment, we can see that RAPIER can
save W = 48.6% of the average CCT compared to
the baseline scheme, and it can reduce the average CCT by
1637275 — 98.22% compared to the routing-only scheme.

Overhead: To make sure that the overhead of the enforcement
module is negligible, we measured the extra CPU usage
introduced by RAPIER’s enforcement module. We generated
more than 900Mbps of traffic with more than 100 flows on
a rack server (with 4-core Intel E5-1410 2.8GHz CPU). The
extra CPU overhead introduced was around 3% (one core)
compared with the case that RAPIER’s enforcement module
was not used (no rate limiting). The throughput remained same
in both cases. Actually, we note that, apart from the software
solutions, some recent hardware solutions [21] can also be
used to achieve precise rate enforcement especially at high
link speeds, offloading some work from the CPU.

B. Large Scale Simulations

Simulation methodology: Existing packet-level simulators
such as ns-2 are not suitable to our case due to their high
overhead [7]. Similar to [7, 12], we develop our own flow-level
simulator. The simulator accounts for the flow arrival events
and departure events, rather than packet sending and receiving



. o [ Coflow Completion Time (s) |
‘ Coflow Id# ‘ Flow Id# ‘ Source | Destination | Volume (GB) | RaPIER | Routing-only | Baseline |
1 M1 M4 3.17
1 2 M2 M5 5.29 50.6 84.1 107.1
3 M3 M9 529
4 M8 M6 10.6
2 5 M6 M5 529 100.9 203 289.5
6 M7 M4 17.9
3 7 M9 M6 106 201.1 204.1 289.2
TABLE II

SUMMARY OF TESTBED EXPERIMENT: THE AVERAGE CCT OF RAPIER IS 117.5S, ROUTING-ONLY IS 163.7, AND BASELINE IS 228.6.
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Fig. 4. The impact of coflow width.

events, to reduce the simulation complexity. It updates the rate
and remaining volume of each flow when an event occurs.
To solve linear programming in RAPIER, we embed the API
provided by CPLEX 10.0 into our simulator.

In the simulations, we use many-to-many communication
pattern within a coflow and assume the inter-coflow arrival rate
follows a Poisson distribution. We mainly evaluate 3 aspects
that may affect the performance of RAPIER: the width of a
coflow (i.e., the number of flows within a coflow), the number
of coflows in the network, and the inter-coflow arrival interval.

For reasonable simulation time, we choose 512-server Fat-
tree [16] and VL2 [17] as topologies. We also compared the
results on 512-server Fattree with that on 8192-server Fattree
(on which the simulator runs much slower, over 8 hours
for just one try) and observed similar performance. In the
simulations, each of our results is an average of 20 tries. The
overall simulation results are shown in Fig. 4-6. In general,
we can see that RAPIER outperforms all other schemes in all
scenarios.

Impact of coflow width: In each round of simulations, we
send 20 coflows with the same width into the network. Fig. 4
shows the simulation results. From this figure, we make the
following observations.

Firstly, as shown in Fig. 4(a) and (b), the absolute average
CCT is increased with the coflow width. Compared to the
baseline scheme, RAPIER can reduce average CCT by up to
79.44% in Fattree, and 55.55% in VL2. Without routing, the
scheduling-only scheme would loss up to 69.61% — 6.24% =
63.37% (see Fig. 4(c) at width of 64) of the performance in

Fattree.

Secondly, in Fig. 4(c) and (d), we observe a trend that
the relative performance of scheduling-only scheme almost
increases with the coflow width on both topologies. The
reason is that when the coflow width is relatively small, all
the coflows are distributed at different parts of the network.
In this case, coflows are unlikely to compete for bandwidth
with each other. As a result, the scheduling does not have
much benefit, and routing-only scheme achieves almost the
same performance as RAPIER. With the increase of coflow
width, different coflows will interleave with each other. Then,
scheduling can effectively reduce average CCT by controlling
the flow transmission rates.

Again, in Fig. 4(c) and (d), the performance of routing-
only scheme increases with the coflow width at first, but
then decreasing with it. This is because the flow collision
probability (multiple flows are concurrently active at the same
link) increases with the flow number in the network. When
the coflow width is relatively small, routing scheme can get
good performance as it solves such collision. However, when
the coflow width is relatively large, the routing-only scheme
cannot avoid such collision and hence show poor performance.

Thirdly, comparing Fig. 4(c) with 4(d), the routing-only
scheme has better performance in Fattree than that in VL2.
The reason is that in Fattree, more link-disjointed paths can
be found for different flows if they are from different source-
destination pairs, which is not the case in VL2. Accordingly,
routing has more optimization space to improve the average
CCT in Fattree.

Fourthly, there is an anomaly in VL2 when the coflow
width is 384 (see Fig. 4(d)). We should have expected that
the relative performance of scheduling-only scheme would
increase with the flow number in the network. However, this
expectation goes against the actual simulation results. We
note in Fig. 4(b) that large average CCT is caused by many
flows in the network, which makes a large denominator in the
performance definition. This accounts for the drop.

Impact of coflow number: To evaluate how the performance
of RAPIER is influenced by the coflow number in the network,
we fix the coflow width to be 128. From the results in Fig. 5,
we make the following observations.

Firstly, as shown in Fig. 5(a) and (b), the average CCT
is increased with the number of coflows in the network.
RAPIER always outperforms routing-only and scheduling-only
schemes obviously. We can see from Fig. 5(a) that in Fattree
the performance of RAPIER is up to 1:7939-1.0426 _ 35 310,

1.7039
compared to scheduling-only scheme (with 10 coflows) and
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W = 39.89% compared to routing-only scheme

(with 30 coflows).

Secondly, from Fig. 5(c) and 5(d), we can see that, in both
topologies, RAPIER keeps relatively stable performance with
different coflow number. The stable performance of RAPIER
comes from its combination of routing and scheduling. When
routing makes less contribution to RAPIER with the increase of
coflow number, scheduling can contribute more to compensate
the performance loss.

Thirdly, we find that the scheduling-only scheme always
outperforms routing-only scheme in VL2 (Fig. 5(d)), and
scheduling-only scheme is more effective in VL2 than in Fat-
tree (Fig. 5(c) and (d)). Actually, when there are more coflows
competing with each other on the same link, scheduling makes
more contribution to RAPIER than routing does. Compared to
Fattree, there are fewer up links from ToRs in VL2, so it is
likely that more flows will interleave with each other in VL2
than in Fattree. Hereby, scheduling is more efficient for VL2
than for Fattree.

Impact of inter-coflow arrival interval: To investigate the

impact of the inter-coflow arrival interval, we send out 30
coflows with the width of 128 into the network, and observe
the relationship between the system performance and arrival
interval of sequential coflows. Note that the larger average
inter-coflow arrival interval indicates the lower coflow arrival
rate. Zero arrival interval means that all the coflows arrive at
the same time. We set the largest average inter-coflow arrival
interval to be 0.8s, since each coflow may complete in at most
Is if it monopolizes the network in our simulations. From
Fig. 6, we make the following observations.

Firstly, as shown in Fig. 6(a) and (b), the average CCT
is decreased with the increase of average inter-coflow arrival
interval. This is obvious because, as explained above, larger
inter-coflow arrival interval means lower coflow arrival rate.
Furthermore, from Fig.6(c) and Fig.6(d), we find that with
different inter-coflow arrival intervals, RAPIER can reduce
CCT by up to 90.79% in Fattree and 81.14% in VL2 com-
pared to baseline scheme. Even compared to the routing-only
scheme and scheduling-only scheme, in Fattree (Fig.6(a)) the
performance of RAPIER can be up to 2:360-4:332 — 60.43%
(when arrival interval is 0.2s) and 1767305659 — 79 30%
(when arrival interval is 0.4s), respectively.

Secondly, the performance of scheduling-only scheme may
firstly increase as the average coflow arrival interval increases,
and then decrease if the average inter-coflow arrival interval
continue increasing after a certain point (see Fig.6(c) and
6(d)). When the inter-coflow arrival interval is small, many
coflows should wait for the completion of other coflows.
Hence, the baseline is large and it results in bad performance
(see Fig. 6(a) and 6(b)). When the inter-coflow arrival interval
is large, the later coflows may come when the previous coflows
almost complete. In this case, the scheduling scheme does
not take effect to reduce the average CCT, since only a few
coflows are in network at the same time.

Thirdly, in Fig.6(c) and 6(d), we can see that the per-
formance of RAPIER has the same trend as scheduling-only
scheme when the inter-cotask arrival interval is small, while
has the same trend as routing-only scheme when the inter-
cotask arrival interval is large. This is also because that
scheduling is not effective to reduce the average CCT when
only a few coflows are active in network concurrently, while
routing does not take effect when too many coflows in the
network.

Takeaways: For reducing average CCT, routing contributes
more when the network is relatively light loaded, since routing
can reduce unnecessary flow collisions. As a comparison,
scheduling is more critical when network load increases, and
coflows interleave with each other. The success of RAPIER is
that it integrates both routing and scheduling, hence always
outperforms other schemes regardless of the network status.

VI. RELATED WORK

RAPIER contains two parts: routing and scheduling. There
is a large spectrum of related work along either routing or
scheduling. We only review some closely related ones here.



Flow routing in DCNs: Traditional traffic engineering so-
lutions inside a data center [22] or across data centers [23, 24]
focus on improving the network resource utilization while not
reducing the average CCT. They leverage the short-term traffic
predictability in DCNs to improve the system performance.
In another work, zUpdate [25] applies to the scenario where
some network components face failure, while Hedera [7] and
Duet [26] focus on how to distribute flows to balance the
traffic load in the network.

Relative to them, RAPIER investigates how to distribute the
flows belonging to the same coflow evenly into the network
so that the average CCT can be further reduced by scheduling.

Individual flow scheduling in DCNs: There are also many
existing work on optimizing network utilization and reducing
average flow completion time (FCT) by using scheduling
methods, such as PDQ [9] and pFabric [8]. Both PDQ and
pFabric are flow scheduling schemes to minimize FCT by
tagging priority on the packets. Unfortunately, neither of them
can be implemented using existing commodity switches, and
hence they are not easy to widely deploy. Furthermore, they
do not take into account the flow dependency semantics and
thus are coflow-agnostic.

Coflow scheduling in DCNs: Orchestra [4] is perhaps the
first work that take the semantics among flow into account
when optimizing the flow transfers in data center clusters.
After that, the work [5] summarizes the traffic patterns and
flow dependency in DCNs and explicitly proposes the con-
cept of coflow. Then, recent solutions (e.g., Varys [12] and
Barrat [13]) start to apply the coflow concept (or task-aware)
in their network optimizations, however they only focus on
scheduling while neglecting an indispensable part—routing,
which make these solutions insufficient.

VII. CONCLUSION

RAPIER is a system which optimizes average coflow com-
pletion time in DCNs by integrating routing and scheduling.
To the best of our knowledge, RAPIER is the first work that
proposes and proves the position that routing and scheduling
must be jointly considered for optimizing the average CCT.
Through real implementation and extensive simulations, we
demonstrate that RAPIER works with existing commodity
switches and preserves remarkable performance advantages
over the scheduling-only or routing-only solutions.
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