
1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2793250, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 1

RepNet: Cutting Latency with Flow Replication
in Data Center Networks

Shuhao Liu, Hong Xu, Libin Liu, Wei Bai, Kai Chen, and Zhiping Cai

Abstract—Data center networks need to provide low latency, especially at the tail, as demanded by many interactive applications. To
improve tail latency, existing approaches require modifications to switch hardware and/or end-host operating systems, making them
difficult to be deployed. We present the design, implementation, and evaluation of RepNet, an application layer transport that can be
deployed today. RepNet exploits the fact that only a few paths among many are congested at any moment in the network, and applies
simple flow replication to mice flows to opportunistically use the less congested path. RepNet has two designs for flow replication: (1)
RepSYN, which only replicates SYN packets and uses the first connection that finishes TCP handshaking for data transmission, and
(2) RepFlow which replicates the entire mice flow. We implement RepNet on node.js, one of the most commonly used platforms for
networked interactive applications. node’s single threaded event-loop and non-blocking I/O make flow replication highly efficient.
Performance evaluation on a real network testbed and in Mininet reveals that RepNet is able to reduce the tail latency of mice flows, as
well as application completion times, by more than 50%.

Index Terms—Data center networks, latency, flow replication.

F

1 INTRODUCTION

AS modern Web services become data-driven and in-
teractive (e.g., web search and social networks), their

Quality-of-Service tends to have a higher demand in com-
putation capacity and a more strict requirement on response
times. Such applications are usually housed in data centers,
where abundant distributed computing and networking
resources are readily available.

Data center networks, in particular, are tasked to provide
very low latency for many interactive applications [8], [10],
[53]. Low tail latency (e.g. 99%ile or 99.9%ile) is especially
important, since completing a request depends on all (or
most) of the responses from many worker machines [19].
Unfortunately current data center networks are not up to
this task: Many report that the tail latency of short TCP flows
can be more than 10x worse than the average in production
networks, even when the network is only lightly loaded
[10], [52], [53]. The main reason for long tail latency is that
elephant and mice flows co-exist in data center networks.
While most flows are mice with less than say 100 KB, most
bytes are in fact from elephant flows much fewer in number
[8], [22], [32]. Thus mice flows are often queued behind

• The work was supported in part by the Hong Kong RGC ECS-21201714,
GRF-11202315, and CRF-C7036-15G. Part of this work was presented at
IEEE INFOCOM 2014. The corresponding author is Hong Xu.

• S. Liu is with University of Toronto, Toronto, ON, M5S 3G4 Canada
(email: shuhao@ece.utoronto.ca). The work was done when he was with
City University of Hong Kong, Kowloon, Hong Kong.
H. Xu and L. Liu are with City University of Hong Kong, Kowloon, Hong
Kong (email: henry.xu@cityu.edu.hk, libinliu-c@my.cityu.edu.hk).
W. Bai and K. Chen are with Hong Kong University of Sci-
ence and Technology, Kowloon, Hong Kong (email: wbaiab@cse.ust.hk,
kaichen@cse.ust.hk).
Z. Cai is with National University of Defence Technology, China (email:
zpcai@nudt.edu.cn).

Manuscript received xxx xx, 2017; revised xxx xx, 2017.

bursts of packets from elephants in switches, resulting in
long queueing delay and flow completion time (FCT).

The problem has attracted much attention recently in
our community. Loosely speaking, existing work reduces
the tail latency by: (1) reducing the queue length, [8], [9],
[36]; (2) prioritizing mice flows, [10], [13], [28], [50]; and
(3) engineering better multi-path schemes, [26], [49], [53].
While effective, they require changes to switches and/or
end-hosts, and face deployment challenges. Thus there is a
growing need for an application layer solution that provides
immediate latency gains without an infrastructure overhaul.

To this end, we introduce RepNet, a low latency trans-
port at the application layer that can be readily deployed
in current infrastructures. RepNet is based on the simple
idea of flow replication. The key insight is the observation
that multi-path diversity, which is readily available with
high bisection bandwidth topologies such as fat-tree [6],
is an effective means to combat performance degradation
that happens in a random fashion. Flash congestion due
to bursty traffic and imperfect load balancing happen ran-
domly in any part of the network at any time. As a result,
congestion levels on different paths are statistically inde-
pendent. In RepNet, the replicated and original flow are
highly likely to traverse different paths, and the probability
that both experience long queueing delay is much smaller.
RepNet targets general clusters running mixed workloads,
where short flows typically represent a very small fraction
(< 5%) of overall traffic according to measurements [8],
[22]. Additionally, flow replication is orthogonal to all TCP-
friendly proposals in the literature. Thus it can be used
together with schemes such as DCTCP [8] and pFabric [10],
providing even more benefit in reducing latency.

In this paper we make three contributions in designing,
implementing, and evaluating RepNet based on flow repli-
cation.

First, we design RepNet with two schemes of flow repli-

mailto:shuhao@ece.utoronto.ca
mailto:henry.xu@cityu.edu.hk
mailto:libinliu-c@my.cityu.edu.hk
mailto:wbaiab@cse.ust.hk
mailto:kaichen@cse.ust.hk
mailto:zpcai@nudt.edu.cn

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2793250, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

cation, RepFlow and RepSYN, achieving different trade-off
points for different use cases. Both directly use existing
TCP protocols deployed in the network. RepFlow replicates
each short TCP flow by creating another TCP connection to
the receiver, and sending identical packets for both flows.
The application uses the first flow that finishes the transfer.
RepFlow fully reaps the benefits of replication at the cost
of a small amount of redundancy, and works in most cases.
Yet an astute reader might be concerned about the use of
RepFlow in incast scenarios where many senders transmit at
the same time to a common destination causing throughput
collapse [47]. RepFlow potentially aggravates the incast
problem. To address this, we design RepSYN which only
replicates the SYN packet on the second TCP connection,
and uses the connection that finishes handshaking first for
data transmission.

Second, we implement RepNet with both RepFlow and
RepSYN on node.js [1] as a transport module that can
be directly used by existing applications running in data
centers. node.js (or simply node) is a server-side JavaScript
platform that uses a single-threaded event-loop with a non-
blocking I/O model, which makes it ideal for replicating
TCP flows with minimal performance overhead. More-
over, node is widely used for developing the back-end of
large-scale interactive applications in production systems
at LinkedIn [4], Microsoft, Alibaba, etc.1 RepNet is imple-
mented as an asynchronized socket programming library for
node. For compatibility and ease of deployment, it exposes
the same set of APIs as the standard network library (Net),
masking the required flow replication and redundancy re-
moval mechanisms behind the scene. Thus, RepNet on node
potentially provides immediate latency benefit for a large
number of these applications with minimal code change.

Our third contribution is a comprehensive performance
evaluation of RepNet using queueing analysis (Sec. 3),
testbed experiments (Sec. 5.2-5.3), and Mininet emulation
(Sec. 5.4). We develop a simple M/G/1 queueing model to
analyze mean and tail FCT in data center networks. Our
model shows that the diversity gain of replication can be
understood as a reduction in the effective traffic load seen
by short flows, which leads to improved queueing delay and
FCT. We perform testbed evaluation on a small scale leaf-
spine network with five Pronto 3295 switches, and a larger
scale Mininet emulation with a 6-pod fat-tree [25], using an
empirical flow size distribution from a production network
[8]. Our evaluation shows that, both RepFlow and RepSYN
reduce the tail latency of mice flows, especially under high
loads, by more than 50%. RepSYN is less effective compared
with RepFlow in most cases, but it remains beneficial in
incast scenarios where RepFlow suffers from performance
degradation. We further implement a bucket sort applica-
tion using RepNet, and observe that both RepFlow and
RepSYN improves the application level completion times by
around 50%. The implementation code [3], and scripts used
for performance evaluation, are available online [2]. We are
in the process of making RepNet available as an NPM (Node
Package Manager) module for the node user community.

1. https://github.com/nodejs/node/wiki/Projects,-Applications,-
and-Companies-Using-Node

Fig. 1: RTT of three paths between two pods of a fat-tree in Mininet.

Fig. 2: Cross-covariance of each pair of RTT time series measured in
Fig. 1. The absolute value of cross-covariance is always less than 0.015,
implying that the time series are uncorrelated.

2 MOTIVATION AND DESIGN

Let us start by motivating the idea of flow replication to
reduce latency in data center networks, followed by the
high-level design of RepNet including both RepFlow [51]
and RepSYN.

2.1 Motivation
Today’s data center networks are usually constructed with
Clos topologies [11]. In these networks, many paths of equal
distance exist between a pair of hosts. Equal-cost multi-
path routing, or ECMP, is used to perform flow-level load
balancing [29] that routes packets based on the hash value of
the five-tuple in the packet header. Due to the randomness
of traffic and ECMP, congestion happens randomly in some
paths of the network, while many others are not congested
at all.

We experimentally validate this observation using
Mininet [25] with real traffic traces from data centers. We
construct a 6-pod fat-tree without oversubscription, with 3
hosts per rack. Traffic traces from a web search cluster [8]
are used to generate flows with average link load of 0.3,
representing the common utilization figure in production
networks [43]. To measure RTT as indicator of congestion,
we configure 3 hosts in one rack to ping 3 hosts of another
rack in a different pod, respectively. A POX controller is
configured to route the 3 ICMP sequences to 3 distinct paths
between the two ToR switches. The interval of ping is 100 ms
and the measurement lasts for 200 seconds. The RTT results

https://github.com/nodejs/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/nodejs/node/wiki/Projects,-Applications,-and-Companies-Using-Node

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2793250, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 3

ToR 1 ToR 2

Iperf s1

Core 1 Core 2 Core 3

Iperf s2 Prober Iperf r1 Iperf r2 Server

(a) Experiment leaf-spine topology. (b) CDF of the measured RTTs. (c) CDF of 100KB mice flow FCTs.

Fig. 3: Experimental evaluation results to verify our motivation for flow replication.

are shown in Fig. 1. It highlights two key characteristics of
data center traffic: (1) RTT on a single path is low most of the
time, indicating no congestion; (2) the occurrences of flash
congestion, which results in occasional peaks in the RTT,
are uncorrelated on different paths according to the cross-
covariance analysis shown in Fig. 2; and (3) it is rare that all
paths are congested at the same time.

This form of path diversity motivates the idea of flow
replication [51]. By trading a small amount of traffic redun-
dancy for a higher degree of connectivity, replication con-
siderably lowers the probability of transmission experienc-
ing long latency. Theoretically speaking, if the proportion
of congested paths between two end hosts is p, then the
probability of a flow being delayed due to congestion is
lowered from p to p

2 after replication. Since the hot spots
in data center networks are typically scarce, we have p ⌧ 1,
such that p2 ⌧ p.

This simple intuition is verified in our testbed (more
details about the testbed in Sec. 5.1). We establish a small
leaf-spine topology with three paths between two racks as
shown in Fig. 3(a). We generate long-live flows using iperf
that congest one of the paths as illustrated in Fig. 3(a). Two
senders, s1 and s2 in the left rack, are communicating with
r1 and r2 in the right rack, respectively. We are able to
confirm that two TCP flows are routed to the same path
and they are sending at half the link rate (⇠500Mbps) each.
Meanwhile, the other two paths are idle.

We then measure RTT between the prober in the left rack
and the server in the right rack, which is shown in Fig. 3(b).
The RTT is measured at the application layer during TCP
handshaking. Specifically, the prober opens a TCP connection
by sending a SYN packet to the server and starts timing.
The timing stops as soon as the connection is established
successfully (when the ACK to the SYN-ACK is sent by
the prober). We collect 10K RTT samples. As seen from
Fig. 3(b), the RTT distribution in our real testbed matches
our probability analysis in the motivation example well.
That is, with ECMP, a redundant TCP connection can lower
the probability of choosing a congested path from p (13 in
this case) to p

2 (19).
We also collect FCTs of 100 KB mice flows, whose CDFs

are illustrated in Fig. 3(c), using three methods: (1) Send
the flow with one TCP. (2) Send the same flow using two
concurrent TCP connections, and record the FCT of the first
one that finishes. (3) Start two TCP connections at the same

time first, then send the payload through the connection
that finishes handshaking first. Clearly, the CDF of FCT in
Fig. 3(c) show a similar trend to that of RTT in Fig. 3(b),
suggesting that the RTT of SYN packets can reasonably
reflect the congestion of the chosen path. These observations
motivate the design of RepFlow and RepSYN.

2.2 RepNet Design
RepNet comprises of two mechanisms: RepFlow [51] and
RepSYN. We heuristically mandate that flows less than
or equal to 100KB are considered short flows, and are
replicated to achieve better latency. This threshold value is
chosen in accordance with many existing papers [8], [10],
[28], [39]. Thus in both mechanisms, only mice flows less
than 100 KB are replicated. This can be easily changed for
different networks.

RepFlow uses flow replication to exploit multi-path di-
versity. It does not modify the transport protocol, and thus
works on top of TCP as well as any other TCP variants,
such as DCTCP [8] and D2TCP [46]. RepFlow realizes flow
replication by simply creating two TCP sockets for transmit-
ting identical data for the same flow. Though conceptually
simple, RepFlow doubles the number of bytes sent for the
flow. Further, it may aggravate throughput collapse in incast
scenarios, when flows sending concurrently to the same host
[47].

We thus design RepSYN to overcome RepFlow’s short-
comings. The idea is simple: we establish two TCP con-
nections as in RepFlow. However data is only transmitted
using the first established connection, and the other is ended
immediately. Essentially SYN is used to probe the network
and find a better path. The delay experienced by the SYN
reflects the latest congestion condition of the corresponding
path. RepSYN only replicates SYN packets and clearly does
not aggravate incast compared to TCP.

Since RepSYN replicates SYN only and incurs ignorable
traffic overheads, it may be more beneficial to establish even
more TCP connections. The the replication factor can vary
based on the path diversity in the data center network, and it
should also take into account the additional system resource
consumption.

2.3 Discussion
One possible concern is that, in the application layer, the
observable latency of establishing a TCP connection does

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2793250, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 4

Fig. 4: FCT comparison between TCP and MPTCP for mice flows (<100KB) when network oversubscription is 2:1.

not completely reflect the RTT experienced by the SYN.
However, it provides sufficient information for the appli-
cation to validate the relative latency along the two paths,
and determine which path is relatively better.

One may suggest MPTCP [24] as a better choice of
transport, as it is also designed to exploit multiple avail-
able paths in data center networks. is a common transport
protocol to exploit multi-path diversity in networks. As
compared to MPTCP, RepNet differs in several important
aspects. First, RepNet is a pure application-layer solution,
while MPTCP requires kernel upgrades. Second, they have
different objectives. MPTCP aims to increase the throughput
for large flows, while RepNet focuses on minimizing the
latency experienced by critical mice flows. Third, they have
different designs because of different objectives. MPTCP
strips a single copy of data and sends it via multiple paths,
while RepNet sends a redundant replica. Completing a
small flow in MPTCP requires each part to be received
successfully, which is often slower compared to TCP.

It is reported that average and tail FCT in MPTCP is over
20% worse than TCP for mice flows less than 100 KB [7].
We also conduct experiments on our testbed that validate
this observation. The results are shown in Fig. 4, which
compares the FCT of mice flows achieved by TCP and
MPTCP, respectively. In terms of 99.9%ile FCT, MPTCP is
over 40% worse than TCP regardless of the traffic load.

RepNet lends itself to many implementation choices.
Regardless of the detail, it is crucial to ensure path diversity
is utilized, i.e. the five-tuples of the original and replicated
flow have to be different (assuming ECMP is used). In our
implementation we use different destination port numbers
for this purpose.

3 QUEUEING ANALYSIS

The ideas of RepFlow and RepSYN presented in Sec. 2.1
are simple and intuitive. In this section we first present a
queueing analysis of flow completion times in data centers
to theoretically understand the benefits and overhead of
replication. We only present analysis for RepFlow. Analyz-
ing RepSYN requires modeling the conditional expectation
and tail queueing delay which is significantly more chal-
lenging, and we leave it to future work.

3.1 Queueing Model
A rich literature exists on TCP steady-state throughput
models for both long-lived flows [37], [40] and short flows

[27]. There are also efforts in characterizing the completion
times of TCP flows [15], [35]. See [15] and references therein
for a more complete literature review. These models are
developed for wide-area TCP flows, where RTTs and loss
probabilities are assumed to be constants. Essentially, these
are open-loop models. The data center environment, with
extremely low fabric latency, is distinct from the wide-area
Internet. RTTs are largely due to switch queueing delay
caused by TCP packets, the sending rate of which in turn are
controlled by TCP congestion control reacting to RTTs and
packet losses. This closed-loop nature makes the analysis
more intriguing [42].

Our objective is to develop a simple FCT model for TCP
flows that accounts for the impact of queueing delay due
to long flows, and demonstrates the potential of RepNet in
data center networks. We do not attempt to build a fine-
grained model that accurately predicts the mean and tail
FCT, which is left as future work. Such a task is potentially
challenging because of not only the reasons above, but also
the complications of timeouts and retransmissions [41], [47],
switch buffer sizes [12], [35], etc. in data centers.

We construct our model based on some simplifying
assumptions. We abstract one path of a data center network
as a M/G/1 first-come-first-serve (FCFS) queue with infinite
buffer. Thus we do not consider timeouts and retransmis-
sions. Flows arrive following a Poisson process and have
size X ⇠ F (·). Since TCP uses various window sizes to con-
trol the number of in-flight packets, we can think of a flow
as a stream of bursts arriving to the network. We assume the
arrival process of the bursts is also Poisson. One might argue
that the arrivals are not Poisson as a burst is followed by
another burst one RTT later (implying that interarrival times
are not even i.i.d). However queueing models with general
interarrival time distributions are difficult to analyze and
fewer results are available [21]. For tractability, we rely on
the commonly accepted M/G/1-FCFS model [10], [12]. We
summarize some key notations in the table below. Through-
out this paper we consider (normalized) FCT defined as
the flow’s completion time normalized by its best possible
completion time without contention.

For short flows, they mostly stay in the slow-start phase
for their life time [12], [15], [20], [35]. Their burst sizes
depend on the initial window size k. In slow-start, each flow
first sends out k packets, then 2k, 4k, 8k, etc. Thus, a short
flow with X packets will be completed in log2(X/k + 1)
RTTs, and its normalized completion time can be expressed

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2793250, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 5

TABLE 1: Key notations.

M maximum window size (64KB, 44 packets)
SL threshold for long flows (100KB, 68 packets)

F (·), f(·) flow size CDF and PDF
⇢ 2 [0, 1) overall traffic load

W queueing delay of the M/G/1-FCFS queue
k initial window size in slow-start

Fig. 5: Short flow mean FCT. k =
3 packets, flow size distribution
from the web search workload [8].

Fig. 6: Large flow mean FCT. k =
3 packets, flow size distribution
from the web search workload [8].

as

FCTX =
log2(X/k+1)X

i=1

Wi/X + 1, (1)

assuming link capacity is 1 packet per second.
For long flows larger than SL, we assume that they enter

the congestion avoidance phase immediately after it arrives
[37], [40]. They continuously send bursts of a fixed size equal
to the maximum window size M (64KB by default in Linux).
A large flow’s FCT is then

FCT
L
X =

X/MX

i=1

Wi/X + 1, X � SL. (2)

3.2 RepFlow: Quantitative Analysis
We now present a quantitative analysis of FCT for RepFlow.

3.2.1 Mean FCT Analysis

Proposition 1. The mean FCT of short TCP flows can be
expressed by

E[FCT] =
⇢M

2(1� ⇢)

Z SL

0

log2(x/k + 1)

x

f(x)

F (SL)
dx+ 1.

(3)
If RepFlow is used, their mean FCT becomes

E[FCTrep]

=
(1 + ✏)2⇢2M

2(1� (1 + ✏)2⇢2)

Z SL

0

log2(x/k + 1)

x

f(x)

F (SL)
dx+ 1.

(4)

Proof: See Appendix A for a detailed derivation.
Apparently, the mean FCT for short TCP flows calculated

by (3) depends on the load of the network and the flow
size distribution. We use k = 3 packets as the TCP initial
window size, which is consistent with our testbed setting in
Sec. 5.1. Using the same flow size distribution as in Sec. 2.1
from a web search data center [8], Fig. 5 plots the FCT with
varying load.

For FCT of Repflows (4), given small ✏ 0.1, (1+✏)2⇢2 is
much smaller than ⇢. As ⇢ increases the difference is smaller.
However the factor ⇢/(1 � ⇢) that largely determines the

queueing delay E[W] and FCT is very sensitive to ⇢ in
high loads, and a small decrease of load leads to significant
decrease in FCT. In the same Fig. 5, we plot FCT for RepFlow
with the same web search workload [8], where 95% of bytes
are from long flows, i.e. ✏ = 0.05. Observe that RepFlow is
able to reduce mean FCT by a substantial margin compared
to TCP in all loads.

Our analysis reveals that intuitively, the benefit of
RepFlow is due to a significant decrease of effective load
experienced by the short flows. Such a load reduction can
be understood as a form of multi-path diversity discussed
earlier as a result of multi-path network topologies and
randomized load balancing.

At this point one may be interested in understanding the
drawback of RepFlow, especially the effect of increased load
on long flows. We now perform a similar FCT analysis for
long flows. For a large flow with X > SL packets,we thus
have

E[FCT
L] =

⇢M

2(1� ⇢)

X

M ·X + 1 =
⇢

2(1� ⇢)
+ 1. (5)

The mean FCT for long flows only depends on the traffic
load. With RepFlow, load increases to (1 + ✏)⇢, and FCT
becomes

E[FCT
L
rep] =

(1 + ✏)⇢

2(1� (1 + ✏)⇢)
+ 1, (6)

For long flows, load only increases by ✏, whereas small flows
see a load decrease of 1�(1+✏)2⇢. long flows are only mildly
affected by the overhead of replication. Fig. 6 plots the mean
FCT comparison for long flows.

3.2.2 99%ile FCT Analysis

To determine the latency performance at the extreme cases,
such as the 99%ile FCT [8], [9], [28], [53], we need the
probability distribution of the queueing delay, not just its
average. This is more difficult as no closed form result exists
for a general M/G/1 queueing delay distribution. Instead,
we approximate its tail using the effective bandwidth model
[34], which leads to the following proposition:

Proposition 2. With and without RepFlow being applied,
the tail FCT for long flows can be expressed as follows,
respectively:

˜FCTL = E[FCT
L] + (2 ln 10� 1)E[W] · P, (7)

˜FCTL
rep = E[FCT

L
rep] + (2 ln 10� 1)E[WL

rep] · P, (8)

where P =
Z 1

SL

1

x

f(x)

1� F (SL)
dx,

E[WL
rep] =

(1 + ✏)⇢M

2(1� (1 + ✏)⇢)
.

Proof: See Appendix B for a detailed derivation.
Fig. 8 shows the numerical results. Long flows enjoy

better tail FCT compared to short flows, since their trans-
mission lasts for a long time and is not sensitive to long-
tailed queueing delay. Again observe that RepFlow does not
penalize long flows.

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2793250, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 6

Fig. 7: Short flow tail FCT. k =
3 packets, flow size distribution
from the web search workload [8].

Fig. 8: Large flow tail FCT. k =
3 packets, flow size distribution
from the web search workload [8].

3.3 Summary
We summarize our analytical findings. Short flow mean and
tail FCT depend critically on queueing delay, and the factor
⇢

1�⇢ assuming a M/G/1-FCFS queue.
Using replication, they have much less probability of en-

tering a busy queue, and the effective load they experience
is greatly reduced. This confirms the intuition that RepNet
provides path diversity gains in data center networks.

4 IMPLEMENTATION

We now describe our implementation of RepNet with node.
The source code is available online [3].

4.1 Why node?
On a high level, node is a highly scalable platform for
real-time server-side networked applications. It combines
single-threaded, non-blocking socket with the event-driven
philosophy of JavaScript. It runs on Google V8 engine with
core libraries optimized for performance and scalability [1].

The first reason for choosing node is efficiency. Replica-
tion introduces the overhead of launching additional TCP
connections. To provide maximal latency improvements, we
need to minimize this overhead. This rules out a multi-
threaded implementation using for example Tornado or
Thrift [44]. For one thing, replicating mice flows nearly
doubles the number of concurrent connections a server
needs to handle. For the other, the necessary status syn-
chronization between the original connection and its replica
demands communication or shared memory across threads.
For applications with I/O from a large number of concur-
rent connections, a multi-threaded RepFlow will be bur-
dened by frequent thread switching and synchronization
[45] with poor performance and scalability. In fact, we tried
to implement RepNet on Thrift based on python, and
found that the performance is unacceptable.
node satisfies our requirement for high efficiency. Specif-

ically, its non-blocking I/O model in a single thread greatly
alleviates the CPU overhead. Asynchronous sockets in node
also avoid the expensive synchronization between the two
connections of RepFlow. For example, it is complex to
choose a quicker completion between two socket.read
operations using blocking sockets: three threads and their
status sharing will be needed. Instead, node relies on call-
back of the ‘data’ event to handle multiple connections in
one thread, which greatly reduces complexity. The thread
stack memory footprint (typically 2MB per thread) is also
reduced.

The second reason we choose node is that it is widely
deployed in production systems for companies such as

LinkedIn, Microsoft, etc. [4]. Besides deployment in front-
end web servers to handle user queries, a large number
of companies and open source projects rely on node at
the back-end for compatibility.2 node integrates smoothly
with NoSQL data stores, e.g. MongoDB,3 and caches, e.g.
memcached,4 and enables a full JavaScript stack for the
ease of application development and maintenance. For these
reasons, node is commonly used in data centers to fetch data
across server machines. Thus implementing RepNet on it is
likely to benefit a large audience and generate immediate
impact to the industry.

4.2 Overview
Before we evaluate RepNet on a real-world infrastructure to
verify the promising theoretical analysis, we first present
its implementation. RepNet is implemented based upon
the Net5 module, node’s standard library for non-blocking
socket programming. Similar to Net, RepNet exposes some
socket functions, and wraps useful asynchronous network
methods to create even-driven servers and clients, with
additional low latency support by flow replication.

We implement RepNet with the following objectives:
Transparency. RepNet should provide the same set

of APIs as Net, making it transparent to applications.
That is, to enable RepFlow, one only needs to include
require(‘repnet’) instead of require(‘net’), without
changing anything else in the existing code. By default,
RepNet uses RepFlow for small flows (with a threshold size
 100 KB). Users can customize the parameters to switch to
RepSYN or tune the threshold of mice flows.

Though RepNet offers complete transparency, develop-
ers can still enjoy the flexibility to use it. In most cases,
developers are fully aware of the particular applications
that generate small flows that are latency-critical. They can
explicitly apply RepNet on these flows, while leaving other
TCP connections unchanged.

In cases where developers are not aware, there is an
option to blindly automate this selection, with some pre-
dictable overheads. In RepSYN, the strategy can be applied
to all flows. In RepFlow, each flow can be initially replicated
after the connection is established. Then, as soon as enough
data (e.g., 100KB) has been sent out, RepNet can close the
slower connection and stay with a single TCP connection.

Compatibility. A RepNet server should be able to handle
regular TCP connections at the same time. This is required
as elephant flows are not replicated.

RepNet consists of two classes: RepNet.Socket and
RepNet.Server. RepNet.Socket implements a replication
capable asynchronous socket at both ends of a connec-
tion. It maintains a single socket abstraction for appli-
cations while performing I/O over two TCP sockets.
RepNet.Server provides functions for listening for and
managing both replicated and regular TCP connections.
Note that RepNet.Server does not have any application
logic. Instead, it creates a connection listener at the server

2. https://github.com/nodejs/node/wiki/Projects,-Applications,-
and-Companies-Using-Node

3. www.mongolab.com/node-js-platform
4. https://nodejsmodules.org/pkg/memcached
5. http://nodejs.org/api/net.html.

https://github.com/nodejs/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/nodejs/node/wiki/Projects,-Applications,-and-Companies-Using-Node
www.mongolab.com/node-js-platform
https://nodejsmodules.org/pkg/memcached
http://nodejs.org/api/net.html

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2793250, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 7

ONE_CONN DUP_CONN

ENDED CHOSEN

1

25 6

7

4

3

Initiated by
the server

Initiated by
the client

Fig. 9: The FSM of RepNet.Socket.

side, which responds to SYN packets by establishing a
connection and emitting a connected RepNet.Socket object
in a corresponding callback for applications to use.

We now explain the high-level design and working of
RepNet by examining the lifetime of a RepFlow trans-
mission. The case of RepSYN is similar. First, the server
runs a RepNet.Server that listens on two distinct ports.
This is to make sure that the original and replicated flows
have different five-tuples and traverse different paths with
ECMP. When the client starts a RepFlow connection, a
RepNet.Socket object is instantiated. Two Net.Socket ob-
jects, being two members of the RepNet.Socket object, will
send SYN packets to the two ports on the receiver, respec-
tively. They share the same source port number though, so
the server can correctly recognize them among potentially
many concurrent connections it has.

Now our server may not get the two SYN packets at the
same time. To minimize delay, upon the arrival of the first
SYN, the server responds immediately by emitting a new
RepNet.Socket, using one member Net.Socket to process
handshaking while creating another null Net.Socket. The
first TCP connection is then established and ready for appli-
cations to use right away.

The server now waits for the other connection. Its
RepNet.Server maintains a waiting list of connections —
represented by <ip_addr:port> tuples — whose replicas
has yet to arrive. When the second SYN arrives, the server
matches it against the waiting list, removes the connection
from the list, and has the corresponding RepNet.Socket
instantiate the other member Net.Socket. This second TCP
connection will then proceed. At this point, both sides can
send data using RepFlow, as two complete RepNet.Socket
objects. Note that the server also handles standard TCP
connection. In this case a second SYN will never arrive and
can be detected by timeout.

Our implementation is based on node 0.11.13. We in-
troduce more details of our implementation in the follow-
ing.

4.3 Class: RepNet.Socket
The key difference between RepNet.Socket and Net.Socket
is the I/O implementation. Since a RepNet.Socket has two
TCP sockets, a Finite State Machine (FSM) model is used
to handle the asynchronous I/O across them. For brevity,
all four states of the FSM are listed in Table 2. Figure 9
shows the possible state transitions with more explanation
in Table 3.

The client, who initiates the connection, always starts
in DUP_CONN, and socket.write() in RepNet is done by

calling socket.write() of both member Net.Socket objects
to send data out. The server always starts in ONE_CONN
waiting for the other SYN to arrive, and when it does enters
DUP_CONN. In both states read operations are handled in the
callback of a ‘data’ event. A counter is added for each
connection to coordinate the detection of new data. As soon
as new chunks of buffer are received, RepNet.Socket emits
its ‘data’ event to the application.

For the server, if there are writes in ONE_CONN, they
are performed on the active connection immediately and
archived for the other connection with the associated data.
If the archived data exceeds a threshold, the server enters
CHOSEN and disregards the other connection. The server may
also enter CHOSEN after timeout on waiting for the other
connection, which corresponds to the standard TCP.

4.4 Class: RepNet.Server
RepNet.Server has two Net.Server objects which listen on
two distinct ports. The key component we add is the waiting
list which we explain now.

The waiting list is a frequently updated queue. Each
flow in the waiting list has three fields: TTL, flowID (the
client’s <ip_addr:port> tuple), and handle (a pointer to the
corresponding RepNet.Socket instance).

There are three ways to update the list:
Push. If a new SYN arrives and finds no match in

the list, a new RepNet.Socket object is emitted and its
corresponding flow will be pushed to the list.

Delete. If a new SYN arrives and it matches with an
existing flow, the corresponding RepNet.Socket object is
then completed and this flow is removed from the list.

Timeout. If the flow stays on the list for too long to be
matched, it is timed out and removed. This timeout can be
adjusted by setting the WL_TIMEOUT option. The default is
equal to RTO of the network. A higher value of WL_TIMEOUT
may decrease the probability of matching failures, at the cost
of increasing computation and memory.

Note that to achieve transparency by exposing the same
APIs as Net.Server, the constructor of RepNet.Server ac-
cepts only one port number parameter. It simply advances
the number by one for the second port. An error event will
be emitted if either of the port is already in use.

4.5 RepSYN
As explained in Sec. 2.2, we propose RepSYN to alleviate
RepFlow’s drawbacks in incast scenarios. A RepSYN client
can work compatibly with a RepNet.Server. Specifically,
once the second connection is established and the server-
side socket enters DUP_CONN, it would be reset immediately
by the client to trigger the transition to CHOSEN in Table 3.
RepSYN can be activated by setting the Flag_RepSYN flag of
the RepNet.Socket object.

5 EVALUATION

We evaluate RepNet using both testbed experiments and
Mininet emulation. Our evaluation focuses on four key
questions:

• How does RepNet perform in practice? With a real-
world flow size distribution [8], we show that for

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2793250, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 8

State Description On Waiting List Performing I/O on
ONE_CONN Only one Net.Socket is open. The other one is pending. Yes The only connection.
DUP_CONN Both member Net.Socket objects are open. No Both connections.
CHOSEN One of Net.Socket objects is no longer valid. Depend on State The chosen connection.
ENDED The RepNet.Socket is ended. No N/A

TABLE 2: All states in the FSM.

Transition Trigger Additional Consequence
1 The slower connection is detected at the server. The corresponding flow is removed from the waiting list.

The replicated connection is binded with the matching
one.

2 One connection raises an exception, or emits an
‘error’ event.

The abnormal connection is abandoned by calling the
destroy() function and resetting the other end.

3 The corresponding flow in the waiting list is
timed out.

The item is deleted from the waiting list.

4 The archived data for writes exceeds the
threshold.

The corresponding flow will NOT be removed from the
waiting list until the second SYN arrives for correctness.

5, 6, 7 Both connections are destroyed or ended.

TABLE 3: Trigger of the state transitions

Core 1 Core 2 Core 3

ToR 1 ToR 2

Rack 1 Rack 2

Fig. 10: The leaf-spine topology of the testbed.

mice flows, RepFlow and RepSYN provide up to
⇠69% and ⇠57% 99.9%ile latency reduction, respec-
tively, over linux stack TCP. RepFlow and RepSYN
also reduce the 99%ile and median latency. The small
replication overhead does not impact the FCT of
elephant flows.

• How does RepNet perform under incast scenarios?
We show that in our testbed with 11-to-1 incast
(22-to-1 for RepFlow), RepFlow still provides lower
99.9%ile latency, but suffer from higher FCT at the
99%ile due to the aggravation of incast. RepSYN, on
the other hand, is indeed effective in reducing both
99%ile and 99.9%ile FCT in incast scenarios.

• How does applications benefit from RepNet? We
implement a distributed bucket sort application with
partition-aggregate workflows using RepNet. The
testbed results show that its 99.9%ile job completion
time is reduced by ⇠45%, and 99%ile job completion
time by ⇠50% with both RepFlow and RepSYN.

• Does RepNet work well in a large scale? Using
Mininet emulation with a 6-pod fat-tree and the
web search workload [8], we show that RepNet still
provides lower median and tail FCT for mice flows
when the network load is larger than 0.4.

5.1 Testbed Setup

Our testbed uses Pronto 3295 48-port Gigabit Ethernet
switches with 4MB shared buffer. The switch OS is PicOS
2.04 with ECMP enabled. Our testbed server has an Intel E5-
1410 2.8GHz CPU (8-thread quad-core), 8GB memory, and a
Broadcom BCM5719 NetXtreme Gigabit Ethernet NIC.

The servers run Debian 6.0 64-bit Linux, kernel version
2.6.38.3. We change RTOmin to 10 ms in order to remedy the
impact of incast and packet retransmission [47]. We found
that setting it to a value lower than 10 ms leads to system
instability in our testbed. The initial window size is 3, i.e.
about 4.5 KB payload. The initial RTO is 3 seconds by default
in the kernel, which influences our experiments in cases
where TCP connections fail to establish at the first time. We
tried to set it to a smaller value, but found that kernel panics
occur frequently because of fatal errors experienced by the
TCP keep-alive timer.

Topology. The testbed uses a leaf-spine topology de-
picted in Fig. 10 which is widely used in production [7], [10],
[26]. There are 12 servers organized in 2 racks, and 3 spine
switches which provide three equal-cost paths between two
hosts under different ToRs. The ping RTT is ⇠178 µs across
racks. The topology is oversubscribed at 2:1 when all hosts
are used. We also conduct experiments without oversub-
scription, by shutting down half of the servers in each rack.

Although our testbed is small in scale, it gives us a
glimpse of how RepFlow and RepSYN are beneficial in
production environments. The benefits of RepFlow and
RepSYN are more salient in actual datacenters. The reason
is that large-scale datacenters provide more paths, and more
diversity gains between a pair of nodes. Also the probability
of two TCP flows being routed to the same path is lower,
meaning that more mice flows can actually benefit from
replication. In the current configuration, this probability is
1
9 , when the redundant TCP connection fails to find an
alternate path. In this case, RepFlow and RepSYN are no
longer useful.

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2793250, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 9

Fig. 11: FCT/NFCT comparison when network oversubscription is 1:1. The shadowed area indicates the estimated baseline software overhead.

Fig. 12: FCT/NFCT comparison when network oversubscription is 2:1. The shadowed area indicates the estimated baseline software overhead.

5.2 Performance under Empirical Traffic Workload
5.2.1 Workload Generation

We use the flow size distribution from a web search work-
load [8] to drive our experiments. Most flows (⇠60%) in this
workload are mice flows smaller than 100KB, though over
95% of the bytes are from 30% of flows larger than 1MB.

Flows are generated between random pairs of servers in
different racks following a Poisson process, with bottleneck
traffic load varying from 0.1 to 0.5 for both the oversub-
scribed and non-oversubscribed settings. We notice that
when the bottleneck load is higher than 0.5, packet drops
and retransmissions become too frequent to conduct mean-
ingful experiments. At each run, we collect and analyze flow
size and completion time information from at least 200,000
flows for each scheme, and each experiment lasts for at least
6 machine hours.

5.2.2 Performance Metrics

flow completion time (FCT) is commonly used as the per-
formance metric in the literature [7], [10], [31]. Yet here
we adopt a slightly different metric called Normalized Flow
Completion Time (NFCT) as our main performance metric
for RepFlow and RepSYN. NFCT is defined as the mea-
sured FCT minus the estimated baseline software overhead,
which is the software networking overhead to use a single
TCP connection. Software networking overhead includes
for example code interpretation, transition between user
space and kernel space, socket creation, binding, context
switching, etc., and varies depending on the OS and the
networking stack. It is also possible to almost completely
avoid this overhead using a low-level, compiled language
and various kernel bypassing techniques [33], [38], [54]. By
removing its impact, NFCT is in fact a better metric to reflect
the actual in-network latency.

The estimated baseline software overhead on our testbed
with our node implementation is 6.82 ms. It is measured
by averaging the FCTs of 100K flows of 1KB sent to local-
host, using our implementation without network latency.
More discussion on overhead is deferred to Sec. 5.2.6. Note
that although RepFlow and RepSYN incur more software
networking overhead than TCP (because of the use of an
extra TCP socket), this slight difference is already included
in their NFCT statistics by definition.

We compare RepFlow and RepSYN against standard
Linux TCP Cubic. Since both RepFlow and RepSYN are
completely working in the application layer, whose func-
tionality is orthogonal to lower layer schemes, we do not
compare against these schemes.

5.2.3 NFCT of Mice Flows

First, we study the NFCT of mice flows. We compare
three statistics, median, 99%ile and 99.9%ile NFCT, to show
RepFlow and RepSYN’s impact on both the median and tail
latency.

Fig. 11 shows the results without oversubscription in the
network. Neither RepFlow nor RepSYN makes much differ-
ence when the load is low (0.2). As the load increases,
RepFlow and RepSYN yield greater benefits in both median
and tail latency. When the load is 0.5, RepFlow provides
15.3%, 33.0% and even 69.9% reduction in median, 99%ile,
and 99.9%ile NFCT, respectively. RepSYN also achieves
10.0%, 15.8% and 57.8% reduction in median, 99%ile, and
99.9%ile NFCT, compared with TCP.

An interesting observation is that when the load is high,
RepFlow achieves much lower tail latency, while RepSYN
becomes less beneficial. This is because RepFlow with dupli-
cated transmissions has a lower probability of experiencing
packet losses which constitutes a great deal in tail latency.

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2793250, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 10

Fig. 13: 99%ile NFCT comparison
of flows with different sizes.

Fig. 14: NFCT of mice flows in
incast. Average bottleneck load is
0.2.

When the network is oversubscribed at 2:1, the results
are similar in general as shown in Fig. 12. RepFlow and Rep-
SYN are in fact more beneficial in this case, because bursty
traffic is more likely to appear at the second or third hop
now, which can be avoided by choosing another available
path. Therefore, in a production data center network where
the topology is typically oversubscribed with many paths
available, RepFlow and RepSYN are able to greatly reduce
the tail latency and provide better performance.

We also study the impact of flow size on performance
improvement. We divide all mice flows into 6 groups based
on the minimum number of round trips needed to transmit
by TCP. Fig. 13 illustrates the 99%ile NFCT of these groups,
when the load is 0.4. We can see that RepFlow and RepSYN
are equally beneficial for mice flows of different sizes. We
observe the same result for different loads and oversubscrip-
tion settings and omit the figures here.

5.2.4 Performance under Incast

We carefully study RepFlow and RepSYN’s performance
in incast scenrios here. In this experiment, whenever we
generate a mice flow, we create another 10 flows of the same
size with the same destination in parallel, resulting in a 11-
to-1 incast pattern. For RepFlow it becomes 22-to-1 incast.
Note the flow size distribution still follows the web search
workload with both mice and elephants.

The performance is illustrated in Fig. 14. Note that the
x-axis is in log scale, which shows more details about the
tail latency. Though RepFlow is still able to cut the 99.9%ile
NFCT by 20.5%, it is no longer beneficial in the 99%ile,
which is ⇠400µs longer than TCP. Most flows experience
longer delay using RepFlow. The benefit in the 99.9%ile is
because hash collision with elephants still contributes to the
worst-case FCTs in our testbed. However, the benefit may
be smaller if the concurrency of small flows was extremely
high in incast. In those cases RepFlow could become a real
burden.

Fig. 14 shows that RepSYN, on the other hand, has
8.7% and 6.0% NFCT reductions in the 99%ile and 99.9%ile,
respectively. The slowest half of all flows are accelerated.
Therefore, our suggestion for applications which incorpo-
rate serious many-to-one traffic patterns is to use RepSYN
instead. Without aggravating the last hop congestion, Rep-
SYN is still beneficial for reducing in-network latency.

5.2.5 Impact on Large Flows

We now assess the impact of RepFlow on elephant flows due
to the additional traffic it introduces. We plot throughput
of elephants in both low and high loads in Fig. 15a and
Fig. 15b, respectively. It is clear that throughput is not
affected by RepFlow or RepSYN. The reason is simple: for
data centers mice flows only account for a fraction of the
total traffic [8], [22], and replicating them thus cause little
impact on elephants.

5.2.6 Overhead of Replication

We look at the additional software networking overhead of
RepFlow and RepSYN due to the extra TCP connections
and state management as mentioned in Sec. 4. We use the
same method of obtaining the baseline software overhead
— measuring the average FCT of 100K flows of 1KB sent to
localhost — for RepFlow and RepSYN. These 100K flows are
sent sequentially, making them independent of each other.
The result is shown in Fig. 16 with error bars representing
one standard deviation. Observe that on average, RepFlow
incurs an extra 0.49ms of software overhead, while Rep-
SYN’s overhead is 0.32ms in our current implementation.
Note that the software networking overhead differs with
different system settings.

Another source of overhead is the extra data sent into the
network. This is the reason why we see a relatively longer
median NFCT in RepFlow and RepSYN when the traffic
load is low (e.g., 0.1). This overhead does not directly impact
application performance because it is the tail latency, rather
than the average, of mice flows that critically affects the
performance of applications with a partition-aggregation
workflow in datacenters [19].

5.2.7 Discussion

Finally, we comment that the testbed scale is small with
limited multipath diversity. Both the kernel configuration
and our implementation can be further optimized. Thus the
results obtained shall be viewed as a conservative estimate
of RepFlow and RepSYN’s practical benefits in a production
scale network with a large number of paths.

5.3 Application-Level Performance
After the flow-level performance evaluation, one question
remains unclear: how much performance enhancement can we
get by using RepNet for applications? We answer this question
by implementing a distributed bucket sort application in
node on our testbed, and evaluating the job completion
times with different transport mechanisms.

5.3.1 A Sorting Application

We choose to implement bucket sort [17], a classical dis-
tributed sorting algorithm, as an example application with
a partition-aggregation workflow. In bucket sort, there exists
a master which coordinates the sorting process and several
slave nodes which complete the sub-processes individually.
Whenever the master has a large array of numbers (usually
stored in a large text file) to sort, it divides the range of these
values into a given number of non-overlapping groups, i.e.
buckets. The master then scans the array, disseminates the

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2793250, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 11

(a) Low bottleneck traffic load of 0.2. (b) High bottleneck traffic load of 0.4.
Fig. 15: Throughput distribution of large flows.

Fig. 16: Estimated software networking over-
head comparison.

elements to their corresponding buckets using TCP con-
nections. Typically, each slave node holds a bucket, taking
care of unsorted numbers in this bucket. In this case, the
slaves are doing counting sort as the unsorted data arrive
sequentially. A slave returns the sorted bucket to the master,
who simply concatenates the results from all slaves together
as a sorted array.

In our experiment, the unsorted array comprises one
million integers, which are randomly distributed between
0 and 65535. We have all 12 hosts in our testbed working at
the same time, with 1 master and 11 slaves for an individual
sorting job.

All network flows are originally generated through the
socket API provided by the Net module. In order to test
RepFlow and RepSYN provided by our RepNet module, all
we need to do is to change the module require statements
at the very beginning of the node script.

Mice Flows. The unsorted data distribution process from
the master involves a large number of mice flows sending
out to multiple destination slaves, because the unsorted
numbers are scanned sequentially by the master. A buffering
mechanism is used to reduce the flow fragmentation — a
chunk of unsorted numbers will not be sent out until a set
of 20 numbers to the same destination slave is buffered. With
buffering, these flows are still small in size (<1 KB).

Elephant Flows. When a slave completes its share of
work, it returns the sorted results in the form of a large file
to the master. We take these flows as elephants which will
not be replicated by RepNet.

Performance Metrics. In our experiment, each server
is working as both master and slave at the same time.
As a master node, it continuously generates new random
unsorted data sets after the completion of the last job it
coordinates. At the same time, it is working as a slave node
for each one of the other 11 servers. In this case, the network
traffic is a mixture of mice and elephant flows, whose
communication pattern is similar to that of a production
cluster. Note that the starting time of each sorting master
is delayed for several milliseconds randomly, in order to
reduce flow concurrency at the beginning of our experiment.

We examine the CDF of the job completion times with
different transport mechanisms, i.e. stack TCP, RepFlow and
RepSYN. The timing of the job starts when the sorting
master begins, i.e. starts reading the unsorted array from
the input file, and stops as soon as the sorted array are
successfully written to a text file.

Fig. 17: Job completion time CDF of the bucket sort application.

5.3.2 Job Completion Time Analysis

We run the bucket sort application over 1,000 times on each
machine with each transport mechanism, respectively. As
a result, over 12,000 job completion times of similar sorting
tasks are collected. The CDFs are plotted in Fig. 17. Note that
the y-axis is in log scale to emphasize the tail distribution.

The job completion time (JCT) of bucket sort is deter-
mined by the last slave node that completes its work. The
long FCT of even just a single flow greatly degrade the
application-level performance. Therefore, the impact of the
“long tail” of FCTs is magnified. We observe that most jobs
(⇠85%) can finish between 95 to 100 ms, since the paths are
idle most of the time. However, due to flash congestions
in the network, some jobs experience extremely long delay.
With stack TCP, the 99.9%ile job completion time can be
as long as 1.2s, which is over 11x more than a job without
congestion. RepNet improves JCT here: both RepFlow and
RepSYN reduce the 99.9%ile JCT by ⇠45%, to 700–800 ms,
and the 99%ile JCT by ⇠50%.

Comparing RepFlow and RepSYN, their distributions
are similar with small differences. RepFlow turns out to be
marginally better in most (99.7%) jobs, but has a longer tail
(nearly 100 ms) at the 99.9%ile. The reason is that gathering
sorting results may result in an incast pattern, with multiple-
to-one elephant flow transmission. In most cases, these
flows are not concurrent — slaves typically do not finish
at the same time, and RepFlow works fine. However when
elephant flows happen to have a high concurrency and
incast happens, RepSYN is able to better survive the extreme
cases.

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2793250, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 12

Fig. 18: FCT comparison in Mininet with a fat-tree.

5.4 Mininet Emulation
To verify the performance of RepNet in a larger scale
network with higher path diversity, we conduct experi-
ments using Mininet [25]. Mininet is a high fidelity network
emulator for software-defined networks on a single Linux
machine. All the scripts used for evaluation here is available
online [2].

5.4.1 Mininet Configuration

To guarantee high fidelity of the emulation results, we use
a Mininet 2.2.0 virtual machine (official VM distributed
with Ubuntu 14.04 LTS 64-bit) running on an Amazon
EC2 c3.4xlarge instance, which has 16 vCPUs and 30GB
memory.

We create a 6-pod fat-tree without oversubscription. This
is a 3-tier topology with 6 core switches, 18 aggregation
switches, and 18 ToR switches. Each rack holds 3 hosts. As a
result, it supports 54 hosts with 6 equal cost paths between
hosts for different pods. Note that all links in the topology
are set to 50Mbps because of the limited switching ability
on a single machine. The buffer size at each switch output
port is configured to 100 packets. To enable ECMP, an open-
source POX controller module6 is used. The controller im-
plements the ECMP five-tuple hash routing as in RFC 2992.
Flows are generated in exactly the same way in our testbed
experiments using the empirical web search workload.

5.4.2 Emulation Results

We plot the average, 99%ile and 99.9%ile FCT under various
traffic loads in Fig. 18.

Salient Benefit at Tail or High Load. Not surprisingly,
both RepFlow and RepSYN show benefits for tail latency or
under high load (� 0.4), and the figures show similar trends
to Fig. 11 and Fig. 12. However, one significant difference
is that RepSYN is able to approximate or even outperform
RepFlow. The reason is that with more paths available,
congestion level on a single path is less fluctuating. There-
fore, RTTs of the SYN packets can accurately estimate the
congestion level throughout the transmission process of a
single mice flow, with less overhead of redundant bytes.

Low Traffic Load (0.4). However, under low loads, we
cannot see much benefit from using RepNet. In some cases,
they are even worse than the stack TCP. This is due to the
controller overhead in Mininet which we explain now.

6. https://bitbucket.org/msharif/hedera/src

5.4.3 Discussion

Since Mininet is originally designed to emulate a software-
defined network, traffic is tightly controlled by a centralized
controller, i.e. a POX controller process. This makes Mininet
an imperfect tool for traditional network emulation.

When a flow starts in Mininet, its SYN is identified as
an unknown packet by the first switch it encounters, and is
forwarded to the controller immediately. Then the controller
runs ECMP for this packet, and installs new forwarding
rules on all switches along the corresponding path. This
process usually takes ⇠1 ms (as the ping result suggests)
independent of the network state. With a large number
of flows starting around the same time the controller is
easily congested. Flow replication aggravates the controller
overload. This results in the distortion of flow latency, which
does not exist in real data center networks. Nevertheless, in
most cases, we can still benefit from using RepNet despite
the controller overhead.

6 RELATED WORK
Motivated by the drawbacks of TCP, many new data center
transport designs have been proposed. We briefly review
the most relevant prior work here. We also introduce some
additional work that uses replication in wide-area Internet,
MapReduce, and distributed storage systems for latency
gains.

Data center transport. DCTCP [8] and HULL [9] use
ECN-based adaptive congestion control and appropriate
throttling of long flows to keep the switch queue occupancy
low in order to reduce short flows’ FCT. D3 [50], D2TCP
[46], and PDQ [28] use explicit deadline information to
drive the rate allocation, congestion control, and preemptive
scheduling decisions. DeTail [53] and pFabric [10] present
clean-slate designs of the entire network fabric that prior-
itize latency sensitive short flows to reduce the tail FCT.
FUSO [16] attempts to strip a flow and send it via multiple
paths, and utilize the lightly-loaded paths to expedite loss
recovery on the heavily-loaded paths. All of these proposals
require modifications to switches and operating systems.
Our design objective is different: we strive for a simple way
to reduce FCT without any change to TCP and switches, and
can be readily implemented at layers above the transport
layer. RepNet presents such a design with simple flow
replication that works with any existing transport protocol.

Replication for latency. Though seemingly naive, the
general idea of using replication to improve latency has

https://bitbucket.org/msharif/hedera/src

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2793250, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 13

gained increasing attention in both academia and industry
for its simplicity and effectiveness. [5] proposes to employ
duplicated SYN packets for path selection in a multi-path
system, which is similar to RepSYN. The proposed imple-
mentation is in the transport layer. It requires both the SYNs
and the SYN-ACKs to include unique identifiers, such that
the inbound and outbound paths can be selected separately.
RepSYN is implemented in the application layer on top of
legacy TCP. Google reportedly uses request replications to
rein in the tail response times in their distributed systems
[18]. Vulimiri et al. [48] argue for the use of redundant
operations as a general method to improve latency in
various systems, such as DNS, databases, and networks.
RANS [30] makes the network stack be aware of dupli-
cated application-layer requests, such that flows can be well
scheduled for shorter latencies. RepNet, if implemented on
top of its APIs, can benefit from such scheduling technique.

7 CONCLUDING REMARKS

We presented the design, analysis, implementation, and
evaluation of RepNet, a low-latency application layer trans-
port module based on node which provides socket APIs to
enable flow replication. Experimental evaluation on a real
testbed and in Mininet demonstrates its effectiveness on
both mean and tail latency for mice flows. We also proposed
RepSYN to alleviate its performance degradation in incast
scenarios.

REFERENCES

[1] node.js official website. https://nodejs.org.
[2] RepNet experiment code. https://bitbucket.org/shuhaoliu/

repnet_experiment.
[3] RepNet source code. https://bitbucket.org/shuhaoliu/repnet.
[4] Node at LinkedIn: the pursuit of thinner, lighter, faster. ACM

Queue, 11(12):40:40–40:48, December 2013.
[5] K. Agarwal. Path Selection Using TCP Handshake in a Multipath

Environment. US Patent 14 164 422, July 30, 2015.
[6] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity

data center network architecture. In Proc. ACM SIGCOMM, 2008.
[7] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan,

K. Chu, A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav,
and G. Varghese. CONGA: Distributed congestion-aware load
balancing for datacenters. In Proc. ACM SIGCOMM, 2014.

[8] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data center TCP
(DCTCP). In Proc. ACM SIGCOMM, 2010.

[9] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda. Less is more: Trading a little bandwidth for ultra-low
latency in the data center. In Proc. USENIX NSDI, 2012.

[10] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. M. B. Prabhakar, and
S. Shenker. pFabric: Minimal near-optimal datacenter transport.
In Proc. ACM SIGCOMM, 2013.

[11] A. Andreyev. Introducing data center fabric, the next-generation
Facebook data center network. https://code.facebook.com/
posts/360346274145943/introducing-data-center-fabric-the-next-
generation-facebook-data-center-network/, November 2014.

[12] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router
buffers. In Proc. ACM SIGCOMM, 2004.

[13] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and W. Sun. PIAS:
Practical information-agnostic flow scheduling for data center
networks. In Proc. ACM HotNets, 2014.

[14] O. Boxma and B. Zwart. Tails in scheduling. SIGMETRICS Perform.
Eval. Rev., 34(4):13–20, March 2007.

[15] N. Cardwell, S. Savage, and T. Anderson. Modeling TCP latency.
In Proc. IEEE INFOCOM, 2000.

[16] G. Chen, Y. Lu, Y. Meng, B. Li, K. Tan, D. Pei, P. Cheng, L. L. Luo,
Y. Xiong, X. Wang, and Y. Zhao. Fast and cautious: Leveraging
multi-path diversity for transport loss recovery in data centers. In
Proc. USENIX Annual Technical Conference (ATC), 2016.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, et al.
Introduction to algorithms, volume 2. MIT press Cambridge, 2001.

[18] J. Dean. Achieving rapid response times in large online services.
Berkeley AMPLab Cloud Seminar, http://research.google.com/
people/jeff/latency.html, March 2012.

[19] J. Dean and L. A. Barroso. The tail at scale. Commun. ACM,
56(2):74–80, February 2013.

[20] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal,
A. Jain, and N. Sutin. An argument for increasing TCP’s initial
congestion window. ACM SIGCOMM Comput. Commun. Rev.,
40(3):26–33, June 2010.

[21] S. Foss. Wiley Encyclopedia of Operations Research and Management
Science, chapter The G/G/1 Queue. 2011.

[22] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
P. Patel, and S. Sengupta. VL2: A Scalable and Flexible Data Center
Network. In Proc. ACM SIGCOMM, 2009.

[23] D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris. Funda-
mentals of Queueing Theory. Wiley-Interscience, 2008.

[24] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley.
Multi-path tcp: A joint congestion control and routing scheme
to exploit path diversity in the Internet. IEEE/ACM Trans. Netw.,
14(6):1260–1271, December 2006.

[25] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown.
Reproducible network experiments using container-based emula-
tion. In Proc. ACM CoNEXT, 2012.

[26] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella.
Presto: Edge-based Load Balancing for Fast Datacenter Networks.
In Proc. ACM SIGCOMM, 2015.

[27] J. Heidemann, K. Obraczka, and J. Touch. Modeling the perfor-
mance of HTTP over several transport protocols. IEEE/ACM Trans.
Netw., 5(5):616–630, October 1997.

[28] C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing flows quickly
with preemptive scheduling. In Proc. ACM SIGCOMM, 2012.

[29] C. Hopps. Analysis of an Equal-Cost Multi-Path algorithm. http:
//tools.ietf.org/html/rfc2992, November 2000.

[30] A. M. Iftikhar, F. Dogar, and I. A. Qazi. Towards a redundancy-
aware network stack for data centers. In Proc. ACM Workshop on
Hot Topics in Networks (HotNets), 2016.

[31] V. Jeyakumar, M. Alizadeh, D. Mazieres, B. Prabhakar, C. Kim,
and A. Greenberg. Eyeq: Practical network performance isolation
at the edge. In Proc. USENIX NSDI, 2013.

[32] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken.
The nature of datacenter traffic: Measurements & analysis. In
Proc. IMC, 2009.

[33] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vahdat.
Chronos: Predictable low latency for data center applications. In
Proc. ACM SoCC, 2012.

[34] F. P. Kelly. Notes on effective bandwidths. In Stochastic networks:
Theory and applications, pages 141–168. Oxford University Press,
1996.

[35] A. Lakshmikantha, C. Beck, and R. Srikant. Impact of file arrivals
and departures on buffer sizing in core routers. IEEE/ACM Trans.
Netw., 19(2):347–358, April 2011.

[36] C. Lee, C. Park, K. Jang, S. Moon, and D. Han. Accurate Latency-
based Congestion Feedback for Datacenters. In Proc. USENIX ATC,
2015.

[37] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The macroscopic
behavior of the TCP congestion avoidance algorithm. ACM SIG-
COMM Comput. Commun. Rev., 27(3):67–82, July 1997.

[38] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats. TIMELY: RTT-based
Congestion Control for the Datacenter. In Proc. ACM SIGCOMM,
2015.

[39] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S.
Iqbal, and B. Khan. Minimizing flow completion times in data
centers. In Proc. IEEE INFOCOM, 2013.

[40] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP
throughput: A simple model and its empirical validation. In
Proc. ACM SIGCOMM, 1998.

[41] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R.
Ganger, G. A. Gibson, and S. Seshan. Measurement and analysis
of TCP throughput collapse in cluster-based storage systems. In
Proc. USENIX FAST, 2008.

https://nodejs.org
https://bitbucket.org/shuhaoliu/repnet_experiment
https://bitbucket.org/shuhaoliu/repnet_experiment
https://bitbucket.org/shuhaoliu/repnet
https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
http://research.google.com/people/jeff/latency.html
http://research.google.com/people/jeff/latency.html
http://tools.ietf.org/html/rfc2992
http://tools.ietf.org/html/rfc2992

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2793250, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 14

[42] R. S. Prasad and C. Dovrolis. Beyond the model of persistent TCP
flows: Open-loop vs closed-loop arrivals of non-persistent flows.
In Proc. IEEE ANSS, 2008.

[43] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Ban-
non, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala,
J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart,
and A. Vahdat. Jupiter Rising: A Decade of Clos Topologies
and Centralized Control in Google’s Datacenter Network. In
Proc. ACM SIGCOMM, 2015.

[44] M. Slee, A. Agarwal, and M. Kwiatkowski. Thrift: Scalable cross-
language services implementation. Technical report, Facebook,
2007.

[45] S. Tilkov and S. Vinoski. Node. js: Using javascript to build high-
performance network programs. IEEE Internet Computing, 14(6),
2010.

[46] B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-aware data-
center TCP (D2TCP). In Proc. ACM SIGCOMM, 2012.

[47] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen,
G. R. Ganger, G. A. Gibson, and B. Mueller. Safe and effective
fine-grained TCP retransmissions for datacenter communication.
In Proc. ACM SIGCOMM, 2009.

[48] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and
S. Shenker. Low latency via redundancy. In Proc. ACM CoNEXT,
2013.

[49] P. Wang, H. Xu, Z. Niu, D. Han, and Y. Xiong. Expeditus: Dis-
tributed Congestion-Aware Load Balancing in Clos Data Center
Networks. In Proc. ACM SoCC, 2016.

[50] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron. Better
never than late: Meeting deadlines in datacenter networks. In
Proc. ACM SIGCOMM, 2011.

[51] H. Xu and B. Li. RepFlow: Minimizing flow completion times with
replicated flows in data centers. In Proc. IEEE INFOCOM, 2014.

[52] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. Bobtail: Avoiding
long tails in the cloud. In Proc. USENIX NSDI, 2013.

[53] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. DeTail:
Reducing the flow completion time tail in datacenter networks. In
Proc. ACM SIGCOMM, 2012.

[54] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron,
J. Padhye, S. Raindel, M. H. Yahia, and M. Zhang. Congestion con-
trol for large-scale rdma deployments. In Proc. ACM SIGCOMM,
2015.

Shuhao Liu is currently a Ph.D. student in the
Department of Electrical and Computer Engi-
neering, University of Toronto. He received his
B.Eng. degree from Tsinghua University in 2012.
His current research interests include software-
defined networking and big data analytics.

Hong Xu received the B.Eng. degree from
the Department of Information Engineering, The
Chinese University of Hong Kong, in 2007, and
the M.A.Sc. and Ph.D. degrees from the Depart-
ment of Electrical and Computer Engineering,
University of Toronto. He joined the Department
of Computer Science, City University of Hong
Kong in 2013, where he is currently an assistant
professor. His research interests include data
center networking, SDN, NFV, and cloud com-
puting. He was the recipient of an Early Career

Scheme Grant from the Research Grants Council of the Hong Kong
SAR, 2014. He also received the best paper awards from IEEE ICNP
2015 and ACM CoNEXT Student Workshop 2014. He is a member of
ACM and IEEE.

Wei Bai received the B.E. degree in informa-
tion security from Shanghai Jiao Tong University,
China in 2013 and the Ph.D. degree in computer
science in Hong Kong University of Science and
Technology in 2017. He is now a researcher
in Microsoft Research Asia, Beijing, China. His
current research interests are in the area of data
center networks.

Libin Liu is currently a PhD student in the De-
partment of Computer Science, City University
of Hong Kong. He received his B.E. degree in
software engineering from Shandong University,
in 2015. His current research interests include
network function virtualization and data center
networks.

Kai Chen is an Associate Professor with De-
partment of Computer Science and Engineering,
Hong Kong University of Science and Technol-
ogy. He received his PhD in Computer Science
from Northwestern University, Evanston IL in
2012. His research interests include networked
systems design and implementation, data cen-
ter networks, data centric networking, and cloud
and big data systems. He is interested in finding
simple yet effective solutions to real-world net-
working systems problems.

Zhiping Cai received his B.S., M.S. and Ph.D.
degrees in computer science and technology
with honor all from National University of De-
fense Technology (NUDT), Changsha, Hunan,
in July 1996, April 2002 and December 2005,
respectively. He is currently a Professor in De-
partment of Networking Engineering, College of
Computer, NUDT, Changsha, Hunan, China. His
doctoral dissertation won the Outstanding Dis-
sertation Award of the China PLA. His research
interests include network security, network mea-

surement and network virtualization. He is a member of ACM and IEEE.

