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ABSTRACT

Communication intensive applications in hostswithmulti-core CPU

and high speed networking hardware often put considerable stress

on the native socket system in an OS. Existing socket replacements

often leave significant performance on the table, as well have lim-

itations on compatibility and isolation.

In this paper, we describe SocksDirect, a user-space high per-

formance socket system. SocksDirect is fully compatible with

Linux socket and can be used as a drop-in replacement with no

modification to existing applications. To achieve high performance,

SocksDirect leverages RDMAand sharedmemory (SHM) for inter-

host and intra-host communication, respectively. To bridge the se-

mantics gap between socket and RDMA / SHM,we optimize for the

common cases while maintaining compatibility in general. Socks-

Direct achieves isolation by employing a trusted monitor dae-

mon to handle control plane operations such as connection es-

tablishment and access control. The data plane is peer-to-peer be-

tween processes, in which we remove multi-thread synchroniza-

tion, buffer management, large payload copy and process wakeup

overheads in common cases. Experiments show that SocksDirect

achieves 7∼20x better message throughput and 17∼35x better la-

tency than Linux socket, and reduces Nginx HTTP latency to 1/5.5.
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1 INTRODUCTION

Socket API is the most widely used communication primitive in

modern applications. It is used universally for communications

among processes, containers and hosts. Linux socket can only achieve
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latency and throughput numbers which are an order of magnitude

worse than the raw capability of hardware.

A large body of work aims at improving socket performance. Ex-

isting approaches either optimize the kernel networking stack [35,

46, 73], or move TCP/IP stack to user-space [3, 11, 38, 50, 51], or

offload transport to RDMA NICs [10, 58]. However, all these so-

lutions have limitations on compatibility and performance. Most

of them are not fully compatible with native socket in areas such

as process fork, event polling, multiple application socket sharing

and intra-host communication. Some of them [38] have isolation

problems that do not allow multiple applications to share a NIC.

Even in the performance front, there is still much room for im-

provement. None of existing work can achieve performance close

to raw RDMA, because they fail to remove some important over-

heads such as multi-thread synchronization, buffer management

and memory copy. For example, a socket is shared among threads

in a process, so, many systems use locking to avoid race conditions.

Realizing these limitations, we design SocksDirect, a user-space

socket system to achieve compatibility, isolation and high perfor-

mance simultaneously.

• Compatibility. Applications can use SocksDirect as a drop-

in replacement without modifications. It supports both intra-

host and inter-host communication, and behaves correctly dur-

ing process fork and thread creation.

• Isolation. First, SocksDirect preserves isolation among appli-

cations and containers, which means that no application can

eavesdrop or interfere connections among other applications,

and a malicious application cannot cause its peers to malfunc-

tion. Second, SocksDirect enforces access control policies to

prevent unauthorized connections.

• High Performance. SocksDirect achieves high throughput

and low latency that is comparable to raw RDMA and shared

memory. The throughput is scalable with number of CPU cores.

To achieve high performance, SocksDirect fully exploits the

capability of modern hardware. It leverages RDMA for inter-host

communication and uses sharedmemory (SHM) for intra-host com-

munication. However, translating socket functions to RDMA and

SHM operations is non-trivial. Straightforward solutions may vi-

olate compatibility or leave much performance on the table. For

example, after socket send() returns, the applicationmay overwrite

the buffer. In contrast, send in RDMAneeds to pin andwrite-protect

the buffer. Existing works [10] either provide a zero copy API in-

compatiblewith unmodified applications, ormanage internal buffers

and copy data from application buffer.

To achieve all the three goals simultaneously, we first need to

understand how Linux socket provides compatibility and isolation.

Linux socket provides a virtual file system (VFS) abstraction to

applications. With this abstraction, application developers can do

communication like operating files, without digging into network

protocol details.This abstraction also provides good isolation among

applications that share an address and port space. However, the
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VFS abstraction is very complicated and many APIs are inherently

not scalable [17, 20, 38].

We find that many commonly used socket operations are actu-

ally simple despite the generality and complexity of VFS.Therefore,

our design principle is optimizing for the common situations while

staying compatible in general.

To speedup data transmissionwhile keeping isolation in connec-

tionmanagement, SocksDirect separates control and data plane [57].

We design a monitor daemon in each host as the control plane to

enforce access control policies, manage address/port resources, dis-

patch new connections, and establish transport channels between

communication peers. The data plane is handled by a dynamically

loaded user-space library libsd, which intercepts function calls to

Linux glibc. libsd implements socket APIs in user space and for-

wards non-socket related APIs to the kernel.

In SocksDirect, data transmission and event polling is han-

dled in a peer-to-peer fashion between processes. We exploit mul-

tiple techniques to effectively utilize hardware and improve sys-

tem efficiency. In general, a socket connection is shared among

threads and forked processes. To avoid race conditions in access-

ing socket metadata and buffers, synchronization is needed. Rather

than locking on each operation, we design a token-based approach

for sharing that remove synchronization overhead for the common

case. To send and receive data fromNICs, existing systems allocate

buffers for each packet. To remove buffer management overhead,

we design a per-connection ring buffer with two copies on both

sender and receiver, then leverage RDMA and SHM to synchro-

nize from sender ring buffer to receiver. To achieve zero copy for

large messages, we leverage the virtual memory to remap pages.

SocksDirect achieves latency and throughput close to the raw

performance achievable from the underlying SHMqueue and RDMA.

On the latency side, SocksDirect achieves 0.3μs RTT for intra-

host socket, 1/35 of Linux and only 0.05μs higher than a bare-metal

SHM queue. For inter-host socket, SocksDirect achieves 1.7μs
RTT between RDMA hosts, almost the same as raw RDMA write

and 1/17 of Linux. On the throughput side, a thread can send 23 M

intra-host messages per second (20x of Linux) or 18 M inter-host

(15x of Linux, 1.4x of raw RDMAwrite).The throughput is scalable

with number of cores. For large messages, with zero copy, a single

connection saturates NIC bandwidth. SocksDirect offers signifi-

cant speedup for real-world applications. For example, HTTP re-

quest latency of Nginx [60] improves by 5.5x.

In summary, we make the following contributions: (1) An analy-

sis of overheads in Linux socket. (2) Design and implementation of

SocksDirect, a high performance user space socket system that is

compatible with Linux and preserves isolation. (3) Techniques to

support fork, token-based connection sharing, allocation-free ring

buffer and zero copy that may be useful in many scenarios other

than sockets. (4) Evaluations show that SocksDirect achieves per-

formance that is comparable to raw RDMA and SHM queue.

2 BACKGROUND

2.1 Overheads in Linux Socket

Socket is the standard communication primitive among applica-

tions, containers and hosts. Modern datacenter networks have mi-

croseconds of base latency and tens of Gbps throughput. However,

traditional Linux socket is implemented in the OS kernel space

Type Overhead Our Solution

Per op Kernel crossing (syscall) User space library (§3)

Per op Socket FD locks for concurrent

threads & processes

Token-based socket sharing

(§4.1)

Per packet Transport protocol (TCP/IP) Use RDMA / SHM (§4.2)

Per packet Buffer management New ring buffer (§4.2)

Per packet I/O multiplexing Use RDMA / SHM (§4.2)

Per packet Interrupt handling Event notification (§4.4)

Per packet Process wakeup Event notification (§4.4)

Per byte Payload copy Page remapping (§4.3)

Per conn. Kernel FD allocation FD remapping table (§4.5)

Per conn. Locks in TCB management Distribute to libsd (§4.5)

Per conn. New connection dispatch Monitor daemon (§4.5)

Table 1: Overheads in Linux socket.

with shared data structures, making socket a well-known bottle-

neck for communication intensive distributed applications [15]. In

addition, cloud applications and containers at the same host often

communicate with each other, making intra-host socket communi-

cation increasingly important in the cloud era. Under stress tests,

applications such as Nginx [60], Memcached [32] and Redis [18]

consume 50% to 90% CPU time in the kernel, mostly dealing with

TCP socket operations [38].

Conceptually, the Linux networking stack consists of the follow-

ing three layers. First, the Virtual File System (VFS) layer provides

socket APIs (e.g., send and epoll) to applications. A socket connec-

tion is a bidirectional, reliable and ordered pipe, identified by an in-

teger file descriptor (FD). Second, the transport layer, traditionally

TCP/IP, provides I/O multiplexing, congestion control, loss recov-

ery, routing and QoS functions. Third, the Network Interface Card

(NIC) layer communicates with the NIC hardware (or the virtual

interface for intra-host socket) to send and receive packets.

Among the three layers, it is well known that the VFS layer con-

tributes a large portion of cost [17, 20].This can be verified by a sim-

ple experiment: the latency and throughput of Linux TCP socket

between two processes in a host is only slightly worse than those

of pipe, FIFO and Unix domain socket (Table 2), which bypass the

transport and NIC layers.

In the following, we classify socket overheads as Table 1 shows.

2.1.1 Per Operation Overheads.

Kernel crossing. Traditionally, socket APIs are implemented in

kernel, thus require kernel crossing (system call) for each socket

operation. Tomake it worse, the Kernel Page-Table Isolation (KPTI)

patches [24] to protect against Meltdown [47] attacks make kernel

crossings 4x expensive, as Table 2 shows. We aim to bypass kernel

without compromising security (§3).

Socket FD locks. Multiple threads in a process share socket con-

nections. In addition, after a process fork, both parent and child

processes share existing sockets. Sockets can also be passed to an-

other process through Unix domain socket. To protect concurrent

operations, Linux kernel acquires a per-socket lock for each socket

operation [17, 35, 46]. Table 2 shows that a SHMqueue protected by

atomic operations has 4x latency and 22% throughput of a lockless

queue, even if there is no contention. We aim to remove synchro-

nizations in frequently used socket operations (§4.1).

2.1.2 Per Packet Overheads.

Transport protocol (TCP/IP). Traditionally, TCP/IP is the de-

facto transport protocol in datacenters. TCP/IP protocol process-

ing, congestion control and loss recovery consume CPU on every
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Operation Latency Throughput

(μs) (M op/s)

Inter-core cache migration 0.03 50

Poll 32 empty queues 0.04 24

System call (before KPTI) 0.05 21

Spinlock (no contention) 0.10 10

Allocate and deallocate a buffer 0.13 7.7

Spinlock (contended) 0.20 5

Lockless shared memory queue 0.25 27

Intra-host SocksDirect 0.30 22

System call (after KPTI) 0.20 5.0

Copy one page (4 KiB) 0.40 5.0

Cooperative context switch 0.52 2.0

Map one page (4 KiB) 0.78 1.3

NIC hairpin within a host 0.95 1.0

Atomic shared memory queue 1.0 6.1

Map 32 pages (128 KiB) 1.2 0.8

Open a socket FD 1.6 0.6

One-sided RDMA write 1.6 13

Two-sided RDMA send / recv 1.6 8

Inter-host SocksDirect 1.7 8

Process wakeup 2.8∼5.5 0.2∼0.4

Linux pipe / FIFO 8 1.2

Unix domain socket in Linux 9 0.9

Intra-host Linux TCP socket 11 0.9

Copy 32 pages (128 KiB) 13 0.08

Inter-host Linux TCP socket 30 0.3

Table 2: Round-trip latency and single-core throughput of

operations (testbed settings in §5.1). Message size is 8 bytes

if not specified.

sent and received packet. In addition, loss detection, rate-based

congestion control and TCP state machine use timers, which is

hard to achieve both microsecond-level granularity and low over-

head [38]. Fortunately, recent years witnessed large scale deploy-

ment of RDMA in many datacenters [34]. RDMA bypasses kernel

and offloads transport to the RDMA NIC. For inter-host sockets,

we aim to use RDMA given its high throughput, low processing

latency, and near zero CPU overhead (§4.2). For intra-host sockets,

we aim to completely bypass the transport protocol.

Buffer management. Traditionally, CPU send and receive pack-

ets from NICs via ring buffers. A ring buffer is composed of a fixed

number of fixed-length metadata entries. Each entry points to a

buffer that stores the packet payload. To send or receive a packet,

a buffer needs to be allocated and deallocated.The cost is shown in

Table 2. Further, to ensureMTU-sized packets can be received, each

receive buffer should be at least MTU-sized. However, many pack-

ets are smaller than MTU [70] in practice, so the internal fragmen-

tation decreases memory utilization and locality. Although mod-

ern NICs support LSO and LRO [22] to batch multiple packets in a

buffer, we aim to completely remove buffer management overhead.

I/O multiplexing. With legacy NICs, received packets from dif-

ferent connections are often mixed in the ring buffer, so the net-

working stack needs to sort the packets into corresponding socket

buffers.This involves both additional data copy and CPU process-

ing overhead. Modern NICs support Receive Packet Steering [4]

that canmap a specific connection to a dedicated ring buffer, which

is used by high performance socket systems [38, 46, 51]. We aim

to leverage a similar feature in RDMA NICs which de-multiplex

received packets intoQueue Pairs (QPs).

Interrupt handling.TheLinux networking stack is separated into

process contexts and interrupt contexts because it processes events

from both applications and hardware devices. For example, when

an application calls send(), the networking stack is in process

context and sends out the packet (if has available window). When

the NIC receives the packet, it sends an interrupt to the CPU, and

the networking stack processes the packet in interrupt context.The

ACK clocking mechanism [48] in TCP congestion control requires

interrupts and timers to be processed timely.The interrupt context

is not necessarily on the same core with application, resulting in

poor core locality. However, with RDMA NICs, packet processing

that require accurate timing is handled by the NIC hardware, so it

can eliminate most interrupts on the data plane.

Processwakeup.When a process sends a request andwaits for re-

sponse (e.g., RPC), should it relinquish CPU to other processes that

are ready to run? The default answer of Linux is yes, and waking

up a sleeping process takes 3 to 5 μs as shown in Table 2. During

the round-trip time of an intra-host RPC, two process wake-ups

contribute more than half of the RPC round-trip time. For inter-

host RPC via RDMA, the round-trip time for small messages (i.e.

less than MTU size) is even lower than the wakeup cost. To this

end, many distributed systems [29] and user-space network stacks

[51] use polling to avoid wakeup cost. However, straightforward

polling burns one CPU core for each thread, which is not scalable

to many threads. To hide the microsecond scale RPC latency [15],

we notice that cooperative context switch via sched yield is

much faster than process wakeup (Table 2). We aim to let threads

share one CPU core to poll the received messages efficiently (§4.4).

2.1.3 Per Byte Overheads.

Payload copy. In most socket systems, the semantics of send
and recv cause memory copies between application and network

stack. The reader may wonder if we can achieve zero copy send
and recv by using RDMA verbs send and receive. Unfortu-
nately, this straightforward solution may violate application cor-

rectness due to semantic differences between RDMA and socket.

For example, for RDMA send, the sender cannot reuse the send

buffer just after send is called and it is required to receive the com-

pletion from the driver. However, for some web applications, the

send buffer is immediately reused after socket send API is called

since the semantics of the socket send guarantees that the data to

send has already been copied to the kernel. We aim to allow zero

copy for large transfers in standard socket applications.

2.1.4 Per Connection Overheads.

Kernel FD allocation. In Linux, each socket connection is essen-

tially a file in VFS, so an integer file descriptor (FD) and an inode

need to be allocated. The challenge for a user-space socket is that

there are many APIs (e.g. open, close and epoll) that support both

socket and non-socket FDs (e.g. files and devices), so we must dis-

tinguish socket FDs from others. Linux compatible sockets in user

space [10, 51] typically open a file in kernel to obtain a dummy FD

for each socket, so they still need kernel FD allocation. LOS [36]

partitions the FD space to user and kernel portions, but violates

the property that Linux allocates the smallest available FD. How-

ever, many applications such as Redis [8] andMemcached [32] rely

on this property. We aim to bypass kernel in socket FD allocation

while keeping compatibility (§4.5).

Locks in TCBmanagement. During connection setup, Linux ac-

quires several global locks to allocate the TCP control block (TCB).
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FastSocket MegaPipe /

StackMap

IX Arrakis SandStorm /

mTCP

LibVMA OpenOnload Rsocket /

SDP

FreeFlow SocksDirect

Category Kernel optimization User-space TCP/IP stack Offloading to RDMA NICs

Compatibility

Transparent to existing applications � � � � � � � �

epoll (Nginx, Memcached etc.) � � � � � � � �

Compatible with regular TCP peers � � � � � � � �

Intra-host communication � � � � �

Multiple applications listen a port � � � � �

Full fork support � � � �

Container live migration � � �

Isolation

Access control policy Kernel Kernel Kernel Kernel Daemon Daemon

Isolation among containers (VMs) � � � � � �

QoS (performance isolation) Kernel Kernel Kernel NIC NIC NIC NIC NIC Daemon NIC

Removed Performance Overheads

Kernel crossing on data plane Batched � Batched � � � � <16KB msg

Socket FD locks �

Transport protocol � � �

Buffer management �

I/O multiplexing & Interrupt handling Improved � � Improved � � � � �

Process wakeup �

Payload copy � � ≥16KB msg

Kernel FD allocation � � �

TCB mgmt & Connection dispatch � � � � � �

Table 3: Comparison of high performance socket systems.

Recent works such as MegaPipe [35] and FastSocket [46] reduce

lock contention by partitioning the global tables, but as Table 2

shows, non-contended spinlocks are still expensive. We distribute

the work to the user-space library libsd in each process (§4.5).

New connection dispatch. Multiple processes and threads may

listen on the same port to accept incoming connections. In Linux,

cores handling accept calls contend on the queue of incoming

connections. We notice that delegation is faster than locking [62]

and use a monitor daemon to dispatch new connections (§4.5).

2.2 High Performance Socket Systems

Table 3 summarizes high performance socket systems.

Kernel network stack optimization:The first line of work opti-

mizes the kernel TCP/IP stack. FastSocket [46], Affinity-Accept [56],

FlexSC [65] and zero-copy socket [19, 25, 69] achieve good com-

patibility and isolation. MegaPipe [35] and StackMap [73] propose

new APIs to achieve zero copy and improve I/O multiplexing, at

the cost of requiring application modifications. However, the bulk

of kernel overheads are still there. The challenge for supporting

zero copy is the socket semantics (§2.1.3).

User-space TCP/IP stack:The second line of work completely by-

passes kernel TCP/IP stack and implements TCP/IP in user space.

In this category, IX [16] and Arrakis [57] are new OS architectures

that use virtualization to ensure security and isolation. IX lever-

ages LwIP [30] to implement TCP/IP in user space while using

kernel to forward every packet for performance isolation and QoS.

In contrast, Arrakis offloads QoS to NIC, therefore bypasses kernel

for data plane. They use the NIC to forward packets between ap-

plications in a same host. As shown in Table 2, the hairpin latency

from CPU to NIC is still much higher than inter-core cache migra-

tion delay. The throughput is also bounded by Memory-Mapped

I/O (MMIO) doorbell latency and PCIe bandwidth [44, 54].

Apart from these new OS architectures, many user space sock-

ets use high performance packet I/O frameworks on Linux, e.g.,

Netmap [61], Intel DPDK [37] and PF RING [6], in order to di-

rectly access NIC queues in user space. SandStorm [50], mTCP [38],

Seastar [11] and F-Stack [3] propose new APIs and thus need to

modify applications. Most of the API changes aim to support zero

copy, and the standard API still copies data. LibVMA [51], OpenOn-

load [59], DBL [5], LOS [36], and TAS [42].

The performance of user-space TCP/IP stacks is much better

than Linux, but still lower than RDMA and SHM. Another impor-

tant problem is that none of existing solutions supports sharing

socket among threads and processes, thus causing compatibility

problems in fork and container live migration, and multi-thread

locking overhead as well. First, in LibVMA and RSocket, after fork,

the child process either takes the ownership of all existing sockets

away from the parent process, or have no access to any of the ex-

isting sockets. There is no means to control the ownership of each

socket independently. However, many web services [1, 2, 7, 12, 60]

and key-value stores [32] have a master process to accept a con-

nection on a listen socket, then it may fork off a child process to

handle the request, where the child needs to own the socket. At

the same time, the parent process still needs to accept new con-

nections via the listen socket. This makes such web services fail to

work. A more tricky case is that parent and child processes may

concurrently write to logging servers. Second, multi-threading is

common in applications. Either the application takes the risk of

race conditions, or a socket FD lock must be taken per operation.

Locking guarantees correctness, but hurts performance.

Offloading transport to NICs: The third line of research uses

hardware offloading. TCP Offload Engines (TOE) [27] offload part

or full TCP/IP stack to the NIC, but they only achieve commer-

cial success in specialized areas (e.g. iSCSI HBA [72]) and state-

less offloads (e.g. checksum, flow steering and LSO/LRO [22]). The

story of stateful offloads is different in recent years because of

hardware trends and application demands in datacenters [33]. As

a result, RDMA [14] becomes widely available in production data-

centers [34]. RDMA provides two types of abstractions: one-sided

verbs to read and write remote SHM, and two-sided verbs that re-

semble socket send and receive [40]. RDMA uses hardware offload-

ing to provide ultra low latency and near zero CPU overhead.

To enable socket applications to use RDMA, RSocket [10], SDP [58],

and UNH EXS [63] translate socket operations to two-sided RDMA

verbs. They have similar designs, and RSocket is the most actively
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Figure 1: Architecture of SocksDirect. Host 1 and 2 are

RDMA capable, while host 3 is RDMA incapable.

maintained one. FreeFlow [43] virtualizes an RDMA NIC for con-

tainer overlay network, which uses SHM for intra-host and RDMA

for inter-host communication. FreeFlow uses RSocket to translate

socket to RDMA.

However, these works have limitations due to abstraction mis-

match between socket functions and RDMA verbs. On the compat-

ibility side, first, they lack support for several important APIs, e.g.

epoll, so it is not compatible with many applications including Ng-

inx, Memcached, Redis, etc. This is because RDMA only provides

transport functions, while epoll is a file abstraction integrated with

OS event notification. Second, RDMA QP does not support fork

and container live migration [43], so RSocket has the same prob-

lems. Third, because RSocket uses RDMA as the wire protocol, it

cannot connect to regular TCP/IP peers. This is a deployment chal-

lenge because it is unlikely that all the hosts in a datacenter can

be switched to RSocket simultaneously. We aim to transparently

detect whether the remote side supports Rsocket, and fall back to

TCP/IP if not. On the performance side, they fail to remove pay-

load copy, socket FD locks, buffer management, process wakeup

and the per connection overheads. For example, RSocket allocates

buffers and copies payload on both send and receive sides. Simi-

lar to Arrakis, RSocket uses the NIC for intra-host communication,

thus incurring a performance bottleneck.

3 ARCHITECTURE OVERVIEW

To simplify deployment and development [28], as well remove ker-

nel crossing overhead, we implement SocksDirect in user space

rather than kernel space. To use SocksDirect, an application just

needs to load a user-space library libsd by setting theLD PRELOAD
environment variable. libsd intercepts all Linux APIs in standard

C library that are related to file descriptor (FD) operations. It uses

a FD remapping table to distinguish socket FDs from kernel FDs

(e.g. file and devices), implements socket functions in user space

and forwards others to the kernel. However, from a security point

of view, because libsd resides in the application address space, we

cannot trust its behavior. For example, a malicious application may

directly inject an arbitrary message into RDMA QPs and bypass

the checks in libsd library. In addition, TCP port is a global re-

source that needs logically centralized allocation [43, 46]. There-

fore, we need a trusted component outside libsd to enforce access

control and manage global resources.

To this end, we design amonitor daemon at each host to coordi-

nate control plane operations, e.g., connection creation. To ensure

isolation, we consider all applications and the monitor as a shared-

nothing distributed system, and use message passing as the exclu-

sive communication mechanism. The monitor is a single thread

S1
3,4

FD
3

4

5S2
5

Sender Receiver

R1
3

R2
4,5

Monitor
3: S1→R1, 4: S1→R2, 5: S2→R2

Socket Queues

Figure 2: Token-based socket sharing with two sender and

two receiver threads. Dashed arrows indicate the active

sender and receiver of each socket. Each thread tracks its

active sockets and communicates with the monitor via an

exclusive queue.

that polls control messages from all applications. In each host, all

the applications loading libsd must establish a SHM queue with

the host’s monitor daemon, forming the control plane. On the data

plane, applications build peer-to-peer queues to communicate di-

rectly, thus relieving the burden of the monitor daemon. Figure 1

shows the architecture of SocksDirect.

To achieve low latency and high throughput, SocksDirect uses

SHM for intra-host communication and RDMA for inter-host com-

munication. Each socket connection is mapped to a SHM or RDMA

QP. A SHM or RDMA QP is marked by a unique token, so other

non-privileged processes cannot access it. A socket send operation

is translated to a SHM or RDMA write operation to the socket

buffer on the peer. We only use one-sided RDMAwrite verb rather

than two-sided RDMA send/recv verbs.

For intra-host communication, the communication initiator first

sends a request to the local monitor, then the monitor establishes

a SHM queue between the two applications. Afterwards the two

applications can communicate directly.

For inter-host communication, the monitors of two hosts are

both involved. When an application connects to a remote host,

its local monitor establishes a regular TCP connection and detects

whether the remote host supports SocksDirect and RDMA. If both

conditions are satisfied, it establishes an RDMA queue between the

two monitors, so that future connections between the two hosts

can be created faster. The monitor at the remote side dispatches

the connection to the target and helps the two applications estab-

lish an RDMAqueue, as between host 1 and 2 in Fig. 1. If the remote

host does not support SocksDirect or RDMA, it keeps using the

TCP connection, as between host 1 and 3 in Figure 1. The detailed

connection management protocol is presented in §4.5.

To ensure thread safety and support fork and container live mi-

gration, we design a token-based socket sharing mechanism that

optimize for the common cases (§4.1). To remove buffer manage-

ment overheads, we design a per-socket ring buffer that only re-

quires close to one RDMA write operation per inter-host message

and one cache migration per intra-host message (§4.2). Zero copy

and event notification are discussed in §4.3 and §4.4.

4 DESIGN

4.1 Token-based Socket Sharing

Most socket systems acquire a per-FD lock to enable threads and

processes share a socket (Sec. 2.1.1). Previous work [17, 21] sug-

gests that many socket operations are not commutable and syn-

chronizations cannot always be avoided. We leverage the fact that
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SHM message passing is much cheaper than locking [62], and use

message passing as the exclusive synchronization mechanism.

Logically, a socket is composed of two FIFO queues in opposite

directions, each with multiple concurrent senders and receivers.

Our aim is to maximize the common-case performance while pre-

serving the FIFO semantics. We make two observations: First, fork

and thread creations are infrequent in high performance applica-

tions because of their high cost. Second, it is uncommon that sev-

eral processes send or receive concurrently from a shared socket,

because the byte-stream semantics of socket makes it hard to avoid

receiving partial messages. The common case is that the applica-

tion implicitly migrates a socket from one process to another, e.g.

offload a transaction from master to a worker process.

Driven by the above two observations, our solution is to have

a send token and a receive token per socket queue (one direction of

a socket). Each token is held by an active thread, which has the

permission to send or receive. So there is only one active sender

thread and one active receiver thread at any time.The socket queue

is shared among the threads and processes, which allows concur-

rent access from one sender and one receiver without locking (de-

tails will be discussed in Sec. 4.2). When another thread wants to

send or receive, it should request to take over the token.

The details for each type of operations are as follows:

4.1.1 Send/Recv Operation.

When a thread does not have the send token but wants to send

through the socket, the inactive thread needs to take over the token.

If we create a direct communication channel between the inactive

and active threads, there will either be peer-to-peer queues with

number quadratic to the number of threads, or a shared queue with

locking. To avoid both overheads, we use the monitor as a proxy

during the take over process. Since take over is an infrequent op-

eration, the monitor would unlikely be a bottleneck. This message

passing design also has the benefit that sender processes can be on

different hosts, which will be useful in container live migration.

The take over process is given as follows: The inactive sender

puts a take over command into the SHM queue to the monitor. The

monitor polls commands from SHM queues and adds the sender to

a waiting list. If the waiting list is empty, the monitor notifies the

active sender to return the send token to the monitor. The monitor

grants the token to the first inactive sender in thewaiting list. After

receiving the token, the inactive sender becomes active and able to

send. This mechanism is deadlock-free, because either a sender or

themonitor holds the send token. It is also starvation-free, because

each sender can appear in the waiting list at most once and served

in FIFO order. The take over process on the receiver side is similar.

The take-over process takes 0.6 μs, so, if multiple processes con-

currently send through one socket, the aggregated throughputmay

drop to 1.6 Mop/s. However, if we simply use locking, the normal

case throughput would be 5 Mop/s, far lower than 27 Mop/s, the

normal case throughput of token-based socket sharing.

4.1.2 Fork, Exec and Thread Creation.

Socket data sharing.Themain challenge is to share socket meta-

data, buffers and underlying transports after fork and exec. The

memory space becomes copy-on-write after fork and is wiped af-

ter exec, but the socket FDs should still be usable. We use SHM to

store the socket metadata and buffers, so after fork, the data is still

shared. After fork, because a socket created by the child process

Figure 3: Memory layout after fork. FDs 3 and 4 are created

before fork and thus shared. After fork, parent and child pro-

cesses each creates a new FD 5, which is copied on write in

FD table. Socket metadata and buffers of FDs 3 and 4 are in

SHM and thus shared. The child process creates a new SHM

to store socket metadata and buffers of FD 5, which will be

shared to its child when it forks again.

should not be visible by the parent, the child creates a new piece

of SHM to store metadata and buffers of new sockets.

Now we need to share the underlying transports that are con-

nected to peers. SHM transport does not need special care, be-

cause a SHM created before fork/exec is still shared after fork/exec.

However, RDMA has problem with fork/exec because the DMA

memory regions are not in SHM. They become copy-on-write af-

ter fork, while the NIC still DMAs from the original physical pages,

so the child process cannot use existing RDMA resources. After

exec, the entire RDMA context is wiped out. Our solution is to

let the child process re-initialize RDMA resources, e.g., Protection

Domain (PD), Memory Region (MR), etc., after fork/exec. When a

child process uses a socket created before fork, it asks the moni-

tor to re-establish an RDMA QP with the remote endpoint. So, the

remote may see two or more QPs for one socket, but they link to

the unique copy of socket metadata and buffer. As we will see in

§4.2, we only use RDMA write verb, so using any of the QPs is

equivalent. Figure 3 shows an example of fork.

FD space sharing. Different from socket data, the FD space be-

comes copy-on-write after fork: existing FDs are shared, but new

FDs are exclusively owned by the creater process. So the FD remap-

ping table resides in heap memory, which becomes copy-on-write

after fork. To recover the FD remapping table after exec, it is
copied to a SHM before exec. The SHM is attached to the new

process during libsd initialization.

Security. Security is a concern because a malicious process may

disguise itself as the child process of a privileged parent process.

To identify the parent and child relationship in the monitor, when

an application calls fork, clone or pthread create, libsd
first generates a secret for pairing and sends it to the monitor, then

invokes the original function in libc. After fork, the child process

creates a new SHM queue to the monitor and sends the secret. The

monitor can thus pair the child process with the parent.

Monitor action. Upon fork, exec or thread creation, each existing

socket needs to add a sender to the sending direction and a receiver

to the receiving direction.The parent process inherits the token, so

the child process is always inactive.

4.1.3 Container Live Migration.
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(a) Traditional. (b) SocksDirect.

Figure 4: Ring buffer data structures for an intra-host socket.

Shaded part is packet metadata, and black part is payload.

Migration of remaining data in socket queues. Because libsd

runs in the same memory space with the application, it is migrated

to the new host together with the application. The memory states

include the socket queues, so the in-flight (sent but not received)

data will not be lost.

Migration of monitor states. The monitor keeps track of listen-

ing socket information, active thread and waiting list of each con-

nection, and SHM secrets. During container migration, monitor

states are also migrated to the new monitor.

Establish new communication channels. After migration, all

communication channels become obsolete because SHM is local

on a host and RDMA does not support live migration [43, 75]. First,

the migrated container on the new host needs to establish a con-

nection to the local monitor. The local monitor directs the follow-

ing process. An intra-host connection between two containersmay

become inter-host, so libsd creates an RDMA QP in this case. An

inter-host connection between two containers may become intra-

host, and libsd creates a SHM queue. Finally, libsd re-establishes

remaining RDMA and SHM connections.

4.2 Per-socket Ring Buffer

Traditionally, the network stack send and receive packets from

NICs using a ring buffer. As Figure 4a shows, it leads to buffer man-

agement overhead and internal fragmentation. Traditional NICs

support a limited number of ring buffers, so multiple connections

may share one ring buffer, and the networking stack needs to scat-

ter messages from the ring buffer to multiple socket receive buffers.

Fortunately, both RDMA write verb and SHM write operation al-

low the sender to specify the address on the receiver. So, we elim-

inate the traditional ring buffer, and use RDMA and SHM to send

the per-socket send buffer directly. In addition, traditional send

buffer is a linked list of messages and therefore need buffer allo-

cation. To avoid this overhead, we organize the socket buffer as a

ring buffer and store messages back-to-back, as Figure 4b shows.

The sender determines the receive buffer address (i.e. tail pointer),

then use RDMA write verb to write the message to the tail pointer

in remote-side memory. During transmission, the receiver CPU is

fully bypassed. When the receiver application calls recv, data is
dequeued from the head pointer. The process is similar for SHM

because both SHM and RDMA support write primitives.

To tell whether the ring buffer is full, the sender maintains a

queue credits count, indicating the number of free bytes in ring

buffer. When sender enqueues a packet, it consumes credits. When

receiver dequeues a message, it increments a counter locally, and

writes a credit return flag in sender’s memory once the counter ex-

ceeds half the size of ring buffer. The sender regains queue credits

upon detecting the flag.

Two copies of ring buffers on send and receive sides. The

above mechanism still incurs buffer management on the send side

because the sender needs to construct RDMA message in a buffer.

Second, RDMAQPdoes not support container livemigration.Third,

we aim to batch small messages to improve throughput. To this end,

we maintain a copy of ring buffers on both send and receive sides.

The sender side writes its local ring buffer, and invokes RDMA to

synchronize the sender to the receiver. We use an RDMA Reliable

Connection (RC) QP for each ring buffer, and maintain a counter

of in-flight RDMA messages. If the counter does not exceed the

threshold, an RDMA message is sent for every socket send op-

eration. Otherwise, the message is not sent, and send next marks

the first unsent message. Upon completion of an RDMA write, we

send a message containing all unsent changes (send next to tail in

Figure 4b). This adaptive batching mechanism minimizes latency

on idle links and maximizes throughput on busy links. For SHM,

we have only one copy of ring buffer shared by two processes, and

synchronization is done by cache coherence hardware.

Consistency between payload and metadata. For SHM, X86

processors provide total store ordering [26, 64], which implies that

two writes are observed by other cores in the same order as they

were written. Because the receiver polls the metadata to find next

message, the sender writes payload before metadata, so the re-

ceiver would not read the message before the payload is written.

In addition, an 8-byte MOV instruction is atomic. The metadata of

a message is 8 bytes, so the fields in metadata are consistent.

However, RDMA does not ensure write ordering within a mes-

sage [14], so, we do need to make sure a message is completely

arrived. Although message write ordering is observed in RDMA

NICs that use go-back-0 or go-back-N loss recovery [29], it is not

true for more advanced NICs with selective retransmission [48, 53].

In libsd, the sender uses RDMA write with immediate verb to gen-

erate completions on receiver.The receiver polls RDMA completion

queue rather than the ring buffer. RDMAensures cache consistency

on receiver, and the completion message is guaranteed to be deliv-

ered after writing the data to libsd ring buffer [14].

Amortize polling overhead. Polling ring buffers wastes CPU cy-

cles of the receiver when a socket is not used frequently. We amor-

tize polling overhead using two techniques. First, for RDMAqueues,

we leverage the RDMA NIC to multiplex event notifications into

a single queue. Each thread uses a shared completion queue for all

RDMA QPs, so it only needs to poll one queue rather than all per-

socket queues. Second, each queue can switch between polling and

interrupt modes. The queue to the monitor is always in polling

mode. Receiver of each queue maintains a counter of consecutive

empty polls. When it exceeds a threshold, the receiver sends a mes-

sage to sender notifying that the queue is entering interrupt mode,

and stops polling after a short period. When sender writes to a

queue in interrupt mode, it also notifies the monitor and the mon-

itor will signal the receiver to resume polling.

4.3 Zero Copy

As Sec. 2.1.3 discussed, the main challenge for zero copy is to main-

tain the semantics of socket API. Fortunately, virtual memory pro-

vides a layer of indirection, and many works leverage this page

remapping technique. Linux zero copy socket [25] only support

send side, by setting the data pages as copy-on-write. However,
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send page addresses via SHM; 3) map
received pages; 4) (optional) remap
when sender write / memcpy / recv.
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get free pages from pool; 3) send
data via RDMA; 4) send page ad-
dresses via RDMA; 5) map received
pages; 6) return unmapped pages.

Figure 5: The procedure to send a page with zero copy.

many applications overwrite the send buffer frequently, so the copy-

on-write mechanism simply delays the copy from send time to

first overwrite time. To achieve zero copy receive, 20 years ago,

BSD [69] and Solaris [19] remap the virtual page of application

buffer to the physical page of system buffer. However, as Table 2

shows, on modern CPUs, mapping one page has even higher cost

than copying it, because of kernel crossing and TLB flush costs. Re-

cently, many high performance TCP/IP stacks [35, 73] and socket-

to-RDMA libraries [10, 58] provide both standard socket API and

an alternative zero-copy API, but none of them achieves zero copy

for the standard API. Further, no existing works support zero copy

for intra-host sockets.

To enable zero-copy, we add a kernel module to expose sev-

eral kernel functions related to page remapping. To amortize page

remapping cost, we only use zero copy for send or recv with at

least 16 KiB payload size. Smaller messages are copied instead.

Page alignment. Page remapping only works when the send and

receive addresses are page aligned. We intercept malloc func-

tions and allocate 4 KiB aligned addresses for multiple-of-4K sizes,

so most buffers will align to page boundary, without wasting mem-

ory for small allocations. If the size of sent message is not a multi-

ple of 4 KiB, the last chunk of data is copied on send and recv.
However, some applications send and receive from the middle of

buffer, e.g., HTTP body in Nginx follows HTTP headers and is not

aligned. To optimize for the case that applications do not read the

received data and simply send it to another connection, libsd can

unmap the address range and record the page offset.

Minimize copy-on-write.When sender overwrites the buffer af-

ter send, existing designs use copy-on-write. Our observation is

that most applications do not write send buffers byte-by-byte. In-

stead, they overwrite entire pages of the send buffer via recv or

memcpy, so it is unnecessary to copy original data of the page. For
memcpy, we invoke the kernel to remap new pages and disables

copy-on-write, then do the actual copy. For recv, the old page

mappings are replaced by the received pages.

Page allocation overhead. Page remapping requires the kernel

to allocate and free pages for each zero copy send and recv. Page
allocation in kernel uses a global lock, which is inefficient. libsd

manages a pool of free pages in each process locally. libsd also

tracks the origin of received zero-copy pages. When a page is un-

mapped, if it is from another process, libsd return the pages to the

owner through a message.

Send page addresses securely via SHM. For intra-host socket,

we send the physical page addresses in a message in user-space

queues, as step 2 in Figure 5a. We must prevent unsolicited remap-

ping of arbitrary pages. To this end, libsd invokes a modified NIC

driver to get obfuscated physical page addresses of the send buffer

and send the address to receiver via shared memory queue. On the

receiving side, libsd invokes the kernel to remap the obfuscated

physical pages to the application-provided receive buffer.

Zero Copy under RDMA. libsd initializes a pinned page pool

on receiver and send the physical addresses of the pages to the

sender. The sender manages the pool. On sender, libsd allocates

pages from the remote receiver page pool to determine the remote

address of RDMA write, as step 2 in Figure 5b. On receiver, when

recv is called, libsd invokes the NIC driver to map pages in the

pool to application buffer virtual address. After the remapped pages

are freed (e.g. overwritten by another recv), libsd returns them

to the pool manager in sender (step 6).

To send or receive pages via RDMA, they need to be pinned at

the first time of use. When libsd gets the physical address of a

page, the kernel pins the pages if it is not pinned. Because most

applications maintain a pool of send and receive buffers, the pages

are recycled frequently. So, after a while, most pages in send and

receive buffers become pinned. Other pages of the application re-

main unpinned. If the OS runs out of memory, libsd unpins pages.

Hints from applications. The major reason for copy-on-write

on both sender and receiver is that the sender may read the data in

send buffer after send(). However, many applications do not do

this. If applications can be modified to give some hints to libsd, we

would like to add an option O DISCARD SEND BUF to send()
API. So, libsd can map new pages for the send buffer, and the

sender do not need copy-on-write. Further, the ownership of pages

in send buffer can be transferred to the receiver, and the receiver

can read and write the pages directly.

4.4 Event Notification

Challenge 1:multiplex events betweenkernel and libsd.The

application polls events from both sockets and other kernel FDs

handled by Linux kernel. A naive way to poll kernel events is to

invoke the syscall (e.g. epoll wait) every time, which incurs high

overhead because event polling is a frequent operation on virtu-

ally every send and receive. Differently, libsd creates a per-process

epoll thread which invokes epoll wait syscall to poll kernel events.

Whenever epoll thread receives a kernel event, application threads

will report the event together with user-space socket events.

Challenge 2: interrupt busy processes. The socket take-over

mechanism (§4.1.1) requires a process to respond monitor requests

promtly. However, processes may execute application code with-

out calling libsd for a long time. To address this issue, we design a

signal mechanism analogous to interrupts in OS. Event initiators

first poll the receive queue for a period of time for ACK. If no reply,

it sends a Linux signal to the receptor and wake up the process.

The signal handler, registered by libsd, first determineswhether

the process is executing application or libsd code. libsd sets and

clears a flag at entry and exit of the library. If signal handler finds

that the process is in libsd, it does nothing and libsd will process

the event before returning control to the application. Otherwise,
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Figure 6: libsdmaintains a TCP-like state machine for each

connection. This figure shows connection setup states.

the signal handler immediately processes messages from the emer-

gency queue to the monitor.

Challenge 3: enable multiple threads time-share a core. For

blocking operations (e.g., blocking recv, connect and epoll wait),

libsd first polls the ring buffers once. If the operation is not com-

pleted, rather than polling infinitely, libsd calls sched yield to yield

to other processes on the same core. If libsd continues to yield for

a certain number of rounds, it will put itself into sleep. Before sleep-

ing, it sends a message to the monitor and all peers, so they can

wake it up later through a message.

4.5 Connection Management

4.5.1 FD Remapping Table.

Socket FDs and other FDs (e.g. files) share a namespace and

Linux always allocates the lowest available FD. To preserve this

semantics without allocating dummy FDs in the kernel, libsd in-

tercepts all FD-related Linux APIs and maintains an FD remapping

table to map each application FD to a user-space socket object or a

kernel FD. When an FD is closed, libsd put it to an FD recycle pool.

Upon FD allocation, libsd first tries to obtain an FD from the pool.

If the pool is empty, it allocates a new FD by incrementing an FD

allocation counter. The FD recycle pool and allocation counter are

shared among all threads in a process, protected by atomics.

4.5.2 Connection Establishment.

Bind.As Figure 6 shows, after socket creation, the application calls

bind to allocate address and port. Because addresses and ports are

global resources with permission protection, the allocation is coor-

dinated by the monitor. As shown in Figure 6, libsd sends the re-

quest to monitor. To hide the latency of contacting monitor, libsd

returns to application immediately if the bind request would not

fail, e.g., when port is not specified for client-side sockets.

Listen. When a server application is ready to accept connections

from clients, it calls listen and notifies the monitor. To dispatch

new connections, the monitor maintains a list of listening pro-

cesses on each address and port.

Connect. A client application calls connect and sends a SYN

command to monitor via SHM queue. Now the monitor needs to

dispatch the new connection to a listening application. In Linux,

new connection requests are queued in a backlog in the kernel. Ev-

ery time the server application callsaccept, it accesses the kernel

to dequeue from the backlog, which requires synchronization and

adds latency. In contrast, we maintain a per-listener backlog for ev-

ery thread that listens on the socket. The monitor distributes SYN

to a listener thread in round-robin manner.

Dispatching connection to listenersmay lead to starvationwhen

a listener does not accept new connections. We devise awork steal-

ing approach. When a listener invokes accept while the back-

log is empty, it requests the monitor to steal from others’ backlog.

To avoid contention between a listener and monitor, the monitor

sends a request to the listener to steal from the backlog.

Establish a peer-to-peer queue. The first time a client and a

server application communicates, the server monitor helps them

establish a direct connection. For intra-host, the monitor allocates

a SHM queue and sends the SHM key to both client and server ap-

plications. For inter-host, the client and server monitors establish

a new RDMA QP, and send the local and remote keys to the corre-

sponding applications. To reduce latency, the peer-to-peer queue

is established by monitor(s) when the SYN command is distributed

into a listener’s backlog. However, if the SYN is stolen by another

listener, a new queue needs to be established between client and

the new listener, as shown in the Wait-Server state of Figure 6.

Finalize connection setup. After the server sets up peer-to-peer

queue, as the left side of Figure 6 shows, the server application

sends an ACK to client. Similar to TCP handshake, the server ap-

plication can send data to the queue after sending the ACK. When

the client receives the ACK, as shown on the right side of Figure 6,

it sets up the FD mapping and can start sending data.

4.5.3 Compatibility with Regular TCP/IP Peers.

To be compatible with peers that do not support SocksDirect

and RDMA, we need to detect SocksDirect capability and fall

back to TCP/IP. However, Linux does not support adding special

options to TCP SYN and ACK packets. Using another port (e.g. Lib-

VMA [51]) is also unreliable due to middleboxes and network re-

ordering. To this end, we first use kernel raw socket to directly

send SYN and ACK packets with a special option, then fall back to

kernel TCP/IP socket if the special option is not present.

On client side, the monitor sends a TCP SYN packet with a spe-

cial option over the network. If the peer is SocksDirect capable,

its monitor would receive the special SYN and know the client is

SocksDirect capable. The server then responds SYN+ACK with

special option, including credentials to setup an RDMAconnection,

so that the two monitors can communicate through RDMA after-

wards. If either the client or the server finds out that the peer is

a regular TCP/IP host, it creates an established TCP connection in

kernel using TCP connection repair [23]. Then the monitor sends

the kernel FD to the application via Unix domain socket, and libsd

can use the kernel FD for future socket operations.

A tricky thing is that received packets are delivered to both the

raw socket and kernel networking stack, and the kernel will re-

spond with RST because such connection does not exist. To filter

out the RST packets, the monitor installs iptables rules.

4.5.4 Connection Teardown.

libsd deletes an FD from remapping table when the application

calls close. However, the socket data may be still useful because

the FD may be shared to other processes, and there may be un-

sent data in the buffer. We track a reference count for each socket,

which is incremented on fork and decremented on close. To push
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Type Overhead SocksDirect LibVMA RSocket Linux

Per op Total (not thread safe) 53 56 71 413

Per op Total (thread safe) 53 177 209 413

Per op C library shim 15 10 10 12

Per op Kernel crossing (syscall) N/A N/A N/A 205

Per op Socket FD locking N/A 121 138 160

Per packet Total (inter-host) 850 2200 1700 15000

Per packet Total (intra-host) 150 1300 1000 5800

Per packet Buffer management 50 320 370 430

Per packet Transport protocol N/A 260 N/A 360

Per packet Packet processing N/A 200 N/A 500

Per packet NIC doorbell and DMA 600 900 900 2100

Per packet NIC processing & wire 200

Per packet Handling NIC interrupt N/A N/A N/A 4000

Per packet Process wakeup N/A N/A N/A 5000

Per kbyte Total (inter-host) 173 540 239 365

Per kbyte Total (intra-host) 13 381 212 160

Per kbyte Wire transfer 160

Per conn. Total (inter-host) 47000 18000 77000 47000

Per conn. Total (intra-host) 700 3800 33000 14700

Per conn. Initial TCP handshake 16000 16000 47000 N/A

Per conn. Monitor processing 180 N/A N/A N/A

Per conn. RDMA QP creation 30000 N/A 30000 N/A

Table 4: Latency breakdown in SocksDirect and other sys-

tems. Per-operation latency is measured with fcntl(),
per-packet and per-kbyte mean the latency from send()
to recv(), and per-connection latency means connection

setup. Numbers are rough estimations in nanoseconds.

out unsent data, we require a handshake between peers, similar to

TCP close. Because socket is bidirectional, close is equivalent to

shutdown on both send and receive directions.When application

shuts down one direction of a connection, it sends a shutdown mes-

sage to the peer. The peer responds with a shutdown message. A

socket is deleted when libsd receives shutdown messages in both

directions. If an application fails, libsd in the peers will generate

SIGHUP. Although RDMA does not have clear failure semantics,

SocksDirect can handle failures correctly because the ring buffer

has a copy on both send and receive sides.

5 EVALUATION

We implement SocksDirect in three components: a user-space li-

brary libsd, a monitor daemon, and a kernel module to support

zero copy. They have 17K lines of C++ code. We aim to show that

SocksDirect uses RDMA and SHM efficiently, scalable withmulti-

cores, and can speedup unmodified applications.

5.1 Methodology

We evaluate SocksDirect on servers with two Xeon E5-2698 v3

CPUs, 256GiBmemory and aMellanoxConnectX-4NIC.The servers

are interconnected with an Arista 7060CX-32S 100G switch [13].

We use Ubuntu 16.04 with Linux 4.15, RoCEv2 for RDMA and poll

completion queue every 64 messages. Each thread is pinned on a

CPU core. We run tests for enough warm-up rounds before col-

lecting data. For latency, we build a ping-pong application and re-

port the mean round-trip time, with error bars representing 1%

and 99% percentile. We compare with Linux, raw RDMA write

verb, Rsocket [10], and LibVMA [51], a user-space TCP/IP stack

optimized for Mellanox NICs. We did not evaluate mTCP [38] be-

cause the underlying DPDK library has limited support on our NIC.

mTCP has much higher latency than RDMA due to batching, and

the reported throughput was 1.7 M packets per second [39]. We

also compare with SocksDirect without batching and zero copy,

namely SD (unopt). This work does not raise any ethical issues.

5.2 Microbenchmarks

5.2.1 Latency and Throughput.

Figure 7 shows intra-host socket performance between a pair

of sender and receiver threads. For 8-byte messages, SocksDirect

achieves 0.3μs round-trip latency (1/35 of Linux) and 23 M mes-

sages per second throughput (20x of Linux). In comparison, a sim-

ple SHM queue has 0.25μs round trip latency and 27 M through-

put, indicating that SocksDirect adds little overhead. SocksDi-

rect does not use batching for intra-host sockets. RSocket has 6x

latency and 1/4 throughput of SocksDirect, because it uses the

NIC to forward intra-host packets, which incurs PCIe latency. Lib-

VMA uses the NIC or a standard kernel socket to forward intra-

host packets. The one-way delay of SocksDirect is 0.15μs, even
lower than a kernel crossing (i.e. syscall, 0.2μs). Kernel-based sock-
ets require a kernel crossing on both sender and receiver.

Due to memory copy, for 8 KiB messages, the throughput of

SocksDirect is only 60% higher than Linux, and the latency is 1/4.

For messages with at least 16 KiB size, SocksDirect achieves zero

copy. For 1 MiB messages, SocksDirect achieves 1/13 latency and

26x throughput of Linux. The latency of RSocket is unstable and

may be even higher than Linux in some cases.

Figure 8 shows inter-host socket performance between a pair

of threads. For 8-byte messages, SocksDirect achieves 18M mes-

sages per second throughput (15x of Linux) and 1.7μs latency (1/17
of Linux).The latency is close to rawRDMAwrite operations (shown

as dashed line), which does not have socket semantics. Batching

does not affect latency in our benchmarks because an RDMAwrite

is delayed only when the send queue is full. SocksDirect has even

higher throughput than RDMA for 8-byte messages due to batch-

ing. Throughput of non-batched SocksDirect is between RSocket

and RDMA. LibVMA also uses batching to achieve good through-

put, but its latency is 7x of SocksDirect. For message sizes less

than 8 KiB, the throughput of inter-host RDMA is slightly lower

than intra-host SHM, because the ring buffer structure is shared.

For 512B to 8 KiBmessages, aswell as largermessageswithout zero

copy, SocksDirect is bounded by payload copy, but still faster

than RSocket and LibVMA due to lower buffer management over-

heads. For zero copy messages (≥16 KiB), SocksDirect saturates

the 100 Gbps link bandwidth, which has 3.5x throughput of all com-

pared systems and 72% latency of RSocket.

5.2.2 Latency Breakdown.

Table 4 shows why SocksDirect outperforms other socket sys-

tems. Per socket operation, Linux involves kernel crossing and all

systems except SocksDirect involve locking in thread safe mode.

Per packet, SocksDirect saves buffer management cost and of-

floads transport and packet processing to NIC. SocksDirect only

needs two DMAs due to one-sided RDMAwrite. RSocket uses two-

sided RDMA and LibVMA uses a similar packet interface, so the re-

ceive side need one more DMA. LibVMA and RSocket use the NIC

to forward intra-host packets, while SocksDirect uses SHM. The

high latency of Linux attributes to interrupt handling and process

wakeup. For large messages, SocksDirect avoids payload copy

and the page remapping cost is much lower. RSocket performs

better than LibVMA and Linux because it overlaps sender copy,

RDMA send and receiver copy. The connection setup latency of

SocksDirect mainly comes from the initial handshake via Linux

raw socket and creating RDMA QPs via libibverbs.
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Figure 7: Single-core intra-host perfor-

mance with message sizes.
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Figure 8: Single-core inter-host perfor-

mance with message sizes.
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Figure 9: 8-byte data transmission

throughput with number of cores.
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Figure 10: Message processing latency

where processes share a core.
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end latency.
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tion pipeline.

5.2.3 Multi-core Scalability.

Figure 9 shows the throughput of 8-byte messages with differ-

ent number of cores. Sender and receiver process each creates sev-

eral threads, then each thread pins on a core and communicates

with a peer thread. SocksDirect achieves almost linear scalability

for both intra-host and inter-host sockets. For intra-host socket,

SocksDirect provides 306 M message per second throughput be-

tween 16 pairs of sender and receiver cores, which is 40x of Linux

and 30x of RSocket. LibVMA falls back to Linux for intra-host socket.

Using RDMA for inter-host socket, SocksDirect uses batching

to achieve 276 M messages per second throughput with 16 cores,

which is 2.5x of the message throughput of our RDMA NIC and

8x of RSocket. Without batching, SocksDirect can only achieve

62 M throughput (60% of RDMA). RSocket peeks at 24 M for intra-

host and 33 M for inter-host due to limited scalability of buffer

management. Due to lock contention on shared NIC queues, com-

pared to single thread, the throughput of LibVMA reduces to 1/4

with two threads, and 1/10 with three and more threads.The Linux

throughput scales linearly from 1 to 7 cores and bottlenecks on the

loopback or NIC queues with more cores. Although not evaluated,

mTCP is supposed to have higher scalability with multiple cores.

When multiple threads share a core, each thread needs to wait

for its turn to process messages. As Figure 10 shows, although the

message processing latency increases almost linearly with number

of active processes, it is still 1/20 to 1/30 of Linux.

5.3 Application Performance

In this section, we demonstrate that SocksDirect can significantly

improve the performance of real-world applications without mod-

ifying the code. Rsocket [10] is not compatible with any of the

following applications.

5.3.1 Nginx HTTP Server.

To test a typical Web service scenario where the clients come

from the network and served within a host, we use Nginx [60]

v1.10 as a reverse proxy between an HTTP request generator and

an HTTP response generator. Nginx and the response generator

are in a same host, while the request generator is in a different

host. The generators use a keep-alive TCP connection to commu-

nicate with Nginx. LibVMA [51] does not work with unmodified

Nginx due to fork. In Figure 11, the request generator measures

the time from sending an HTTP request to receiving the whole re-

sponse. For small HTTP response sizes, SocksDirect reduces la-

tency by 5.5x compared to Linux. For large responses, due to zero

copy, SocksDirect reduces latency by up to 20x.

5.3.2 Redis Key-Value Store.

Wemeasure Redis [8] latency using redis-benchmark and 8-byte

GET requests. Using Linux, the mean latency is 38.9 μs , with 1%

100



SIGCOMM ’19, August 19–23, 2019, Beijing, China Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, Lintao Zhang

and 99% percentile 31.6 and 56.1 μs . With SocksDirect, the mean

latency is 14.1 μs (64% lower than Linux), with 1% and 99% per-

centile 8.4 and 19.1 μs .

5.3.3 RPC Library.

We measure RPC round-trip time using RPClib [9]. We run the

example 1 KiB RPC in RPClib among two processes inside a host,

and it takes 45 μs . Across two hosts, the RPC takes 79 μs . Using
SocksDirect, intra-host latency becomes 21 μs (53% reduction)

and inter-host is 46 μs (42% reduction). However, SocksDirect is

no panacea. The performance of RPClib and libsd is much lower

than state-of-the-art RPC libraries, e.g., eRPC [39], because the

overhead in RPClib dominates performance.

5.3.4 Network Function Pipeline.

64-byte packets in pcap format originate from an external packet

generator, pass through the network function (NF) pipeline, and

sends back to the packet generator. We implement each NF as a

process that inputs packets from stdin, updates local counters, and

outputs to stdout. For Linux, we use pipe and TCP socket to connect

NF processes inside a host. Figure 12 shows that the throughput of

SocksDirect is 15x and 20x of Linux pipe and TCP socket. It is

even close to a state-of-the-art NF framework, NetBricks [55].

6 LIMITATIONS AND DISCUSSIONS

Scale to many connections. The scalability of SocksDirect to

many connections is bounded by the underlying transports, i.e.,

SHM and RDMA, instead of libsd and monitor. To demonstrate

this, we run a synthetic experiment that creates a lot of connec-

tions between two processes without creating new RDMAQPs and

SHMs. An application thread with libsd can create 1.4 M new con-

nections per second, which is 20x of Linux and 2x of mTCP [38].

The monitor can create 5.3 M connections per second.

Because the number of processes inside a host is limited, the

number of SHM connections will probably not be very large. How-

ever, the scalability of RDMA becomes a concern, especially in

large-scale RDMA deployments [34]. This boils down to two prob-

lems. First, RDMA NIC keeps per-connection states using on-NIC

memory as cache. With thousands of concurrent connections, the

performance suffers from frequent cache misses [39, 41, 48]. We

note that most NIC vendors have realized this problem. As a re-

sult, recent commodity NICs have larger and larger memory, e.g.,

Mellanox ConnectX-5 [66], can store the states of thousands of con-

nections [39], and SmartNICs even have gigabytes of DRAM on

board [31, 67, 68]. We believe the NIC cache miss problem will

be less a concern in future datacenters. The second problem is

that RDMA connection establishment takes ≈ 30μs in our testbed,

which is significant for short connections. However, this process

only involves communication between local CPU and NIC, and we

expect future works to improve.

Transport. We offload transport mechanisms to the RDMA NIC.

The reader may have some concerns about RDMA NIC’s transport

mechanisms. For example, most commodity RDMA NICs rely on

Priority-based Flow Control (PFC) to eliminate congestion losses

in Ethernet networks. PFC brings many problems, such as head-of-

the-line blocking, congestion spreading, and even deadlocks [34].

marking our networks hard to manage and understand. We note

that many efforts have beenmade to improve RDMA transport per-

formance. Emerging RDMA congestion control algorithms [45, 48,

52, 74] not only improve throughput and latency, but also reduce

the number of PFC pause frames. Many advanced loss recovery

mechanisms [49, 53] have also been proposed to allow RDMA de-

ployments over lossy networks without PFC. Hence, we envision

that future RDMANICs can provide low latency and high through-

put transport over lossy datacenter networks.

Idle threadwakeupoverhead. §4.4 achieves time-sharing among

threads via round-robin polling. However, with many threads and

random arrival of messages, most threads are idle when waked up

(Figure 10), and therefore waste CPU cycles. A fundamental solu-

tion would need to modify the kernel scheduling ordering with-

out reintroducing the overheads. For intra-host communication,

in single dispatcher and multiple worker communication pattern,

the dispatcher can determine the scheduling ordering of workers.

For inter-host communication, since the NIC is a centralized dis-

patcher, it would be interesting to use the NIC to determine the

scheduling ordering of threads.

Compatibility limitations. SocksDirect has compatibility limi-

tations that also exist in other user-space network stacks.The glibc

shim using LD PRELOAD cannot intercept direct syscalls, which

can be found in statically linked applications. Sockets are invisi-

ble from /proc file system, so network monitoring utilities may

not work. SocksDirect lacks several kernel stack functions, e.g.,

netfilter and traffic control. However, state-of-the-art NICs al-

ready support QoS and ACL offloading [4]. So these functions can

be offloaded to hardware.

Monitor. Busy polling of the monitor uses a CPU core. Failure

of the monitor daemon is hard to recover. These problems can be

solved by implementing the monitor in the kernel. A kernel mon-

itor will incur synchronization overhead, but the monitor is not

involved for most data-plane operations.

Abstractions beyond socket. Realizing the limitations of RDMA,

LITE [71] proposes an abstraction layer above RDMA, which in-

cludes a socket-like API and shares many techniques with Socks-

Direct. Different from RDMA transport offload, eRPC [39] pro-

poses an onload approach to high performance communication.

It consolidates RPC and transport into a user-space networking

stack. Looking forward, we envision that new communication ab-

stractions should be proposed to bridge the gap between emerging

programmable hardware and high performance applications.

7 CONCLUSION

SocksDirect is a Linux compatible and high performance user-

space socket system. We design a per-host monitor daemon for

trusted control plane; a peer-to-peer synchronization-free data plane

to fully support fork and multi-thread socket sharing; and a ring

buffer that utilizes sharedmemory and RDMA efficiently. SocksDi-

rect achieves performance close to hardware limits and improves

end-to-end performance of real-world applications.
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