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Abstract—Today’s cloud is shared among multiple tenants
running different applications, and a desirable multi-tenant
datacenter network infrastructure should provide bandwidth
guarantees for throughput-intensive applications, low latency for
latency-sensitive short messages, as well as work conservation to
fully utilize the network bandwidth. Despite significant efforts
in recent years, none of them can achieve these three properties
simultaneously. In this paper, we identify the key deficiency of
prior solutions and use this insight to motivate our design of
Trinity—a simple, practical yet effective solution that achieves
bandwidth guarantees, work conservation and low latency si-
multaneously in the cloud. We implement Trinity using existing
commodity hardwares and demonstrate its superior performance
over prior solutions using testbed experiments.

I. INTRODUCTION

In today’s clouds, the network resource, unlike the compute

and storage resources, is shared in an uncoordinated best-

effort manner among multiple tenants. For this reason, the

tenants may experience varied network performance which

can adversely affect their application performance and increase

their cost. For example, recent studies on several major cloud

infrastructures have revealed that bandwidth and packet laten-

cy can vary significantly by an order of magnitude [1]–[5].

The lack of predicted performance has prevented users and

enterprises from migrating their applications into the cloud,

especially for delay sensitive applications such as web search,

retail, advertising, recommendation systems, etc.

A natural way to provide predicted network performance

is to let the users specify the amount of bandwidth they

need and allocate dedicated bandwidth to them, i.e., providing

bandwidth guarantees to the tenants. However, such strict

bandwidth allocation may result in bandwidth waste if the

tenant cannot fully utilize his share. Thus, the cloud network

should also provide work conservation to enable the multiplex-

ing economic benefits for the cloud provider. At the same time,

it should provide low latency to short flows for small response

time. As a result, a good cloud network design should be able

to meet these three objectives simultaneously.

While significant efforts [1, 6]–[15] have been made toward

sharing the cloud and obtaining predictable network perfor-

mance, none of them achieves all the three goals simultane-

ously. For example, SecondNet [9] and Oktopus [1] provide

bandwidth guarantees, but they are not work-conserving. Elas-

ticSwitch [6] aims at work-conserving bandwidth guarantees,

however it cannot ensure low latency for short flows, and

more importantly, its work conservation is sacrificed due to a

fundamental tradeoff between accurately providing bandwidth

guarantees and being work-conserving (see details in §II).

We identify that a key deficiency of prior solutions such as

ElasticSwitch [6] is that they heavily rely on end-to-end rate

control while neglecting important support from network. The

reason why ElasticSwitch has to sacrifice work conservation

for bandwidth guarantees is that: it injects without distinction

the traffic of both bandwidth guarantees and work conservation

into the network; the network, by itself, cannot automatically

avoid the interference between these two types of traffic.

Consequently, work-conserving traffic of one tenant, if too

aggressive, can adversely affect bandwidth guarantee traffic

of other tenants and hurt the latency of their short flows.

This directly motivates our design of Trinity in this work. By

Trinity, we show that simple network support can be explored

to solve the problem. Observing that today’s commodity

switches already support 4–8 priority queues [16]–[18], our

key idea in Trinity is that by simply differentiating the two

types of traffic at the end and prioritizing them in the network,

we can readily achieve all the triple goals simultaneously.

Basically, Trinity decouples providing bandwidth guarantees

from being work-conserving by segregating these two types

of traffic at the end, and leveraging commodity switches

to enforce priority queueing in the network. The traffic of

bandwidth guarantees is prioritized over that of work con-

servation. With such prioritization, work conservation can be

designed aggressively without affecting bandwidth guarantees.

Furthermore, such prioritization also makes it easier for Trinity
to achieve low latency for short flows: it only needs to classify

packets of short flows as bandwidth guarantee traffic and let

them receive priority in the network (see details in §III).

Despite being conceptually simple, there are still a few

concrete issues we need to address before making Trinity
truly effective. First, how to design an aggressive rate control

algorithm so that the work-conserving traffic can fully utilize

spare bandwidth in the network, while not causing a large

number of packet drops at switches. Second, how to handle

packet trapping (or starvation) of the work-conserving traffic

in the lower priority queue. Third, how to deal with possible

packet re-ordering which might occur when a long flow

promotes from the lower priority queue to the higher one.

In §III-C, we introduce how Trinity addresses each of them.

We have implemented a Trinity prototype with commodity

servers and switches (§IV). On the end host, our Trinity kernel

module is located as a shim layer over the physical NIC

(Network Interface Card) driver in hypervisor. It does not



Design objectives System requirements

Related Work BW guarantee Work conservation Low latency Switch hardware Topology Control model

Oktopus [1],TIVC [10]

SecondNet [9]
Yes No No

None

MPLS
None Centralized

GateKeeper [14]

EyeQ [8]
Yes Yes No

None

ECN
Congestion-free core Distributed

Seawall [11], NetShare [12]

FairCloud PS-L/N [13]
No Yes No None None Distributed

FairCloud PS-P [13] Yes Yes No Per-VM queues Tree Distributed

Silo [7] Yes No Yes None None Distributed

ElasticSwitch [6]
Yes, tradeoff with

work conservation

Yes, tradeoff with

BW guarantee
No None None Distributed

Trinity Yes, without tradeoff Yes, without tradeoff Yes Priority queues, ECN None Distributed

TABLE I: Summary of previous approaches and comparison to Trinity

introduce any modification to network stacks or applications

of tenants. In the switch, Trinity only requires strict priority

queueing and Explicit Congestion Notification (ECN) which

are both built-in functions for existing commodity switches.

To evaluate Trinity, we build a testbed with 2 Pronto-

3295 Gigabit Ethernet switches and 16 Dell servers. Our

experimental results show that:

• Trinity provides accurate bandwidth guarantees while

achieving good work conservation. For example, Trinity
outperforms ElasticSwitch by 20.88%–53.06% in terms of

the average throughput under different settings;

• Trinity delivers low latency for short flows and improves

their flow completion time (FCT) significantly. For example,

as for 1 KB short flows, compared to ElasticSwitch, Trinity
reduces their FCT by 22%−33% on average and by 68%−
71% at the 99th percentile;

The rest of the paper is organized as follows. §II discusses

the problem and related work. §III introduces the Trinity design

in detail. §IV and §V describe the Trinity implementation and

testbed experiments. §VI concludes this paper.

II. PROBLEM AND RELATED WORK

We consider the cloud sharing problem in this paper. When

tenants arrive with specific bandwidth demands, the cloud

provider needs to have a mechanism to handle their traffic. The

mechanism should satisfy three properties in the following.

• Providing bandwidth guarantees means that each VM can

share a minimum guaranteed bandwidth to send and receive

traffic whenever needed. This is crucial for the predictable

application performance, especially for data-intensive appli-

cations [19, 20] whose completion time mainly rely on the

available network bandwidth.
• Being work-conserving requires that the bottleneck link

should be always fully utilized as long as there are sufficient

demands. This means that a tenant should be able to dynam-

ically grab free bandwidth, which are either unallocated,

or allocated but are not currently used by other tenants.

Work conservation benefits both tenants and the provider

because tenants can finish their jobs faster and the provider

can achieve high resource utilization.
• Delivering low latency for short flows is crucial for many

online data-intensive (OLDI) applications such as web ser-

vices. For better user experience, many OLDI applications

operate under soft real-time constraints that requires short

flows to be completed before deadlines [21].

To the best of our knowledge, prior solutions do not achieve

the three goals simultaneously. Table I summarizes some

related work according to the objectives they meet and the as-

sumptions they have. Specifically, SecondNet [9], Oktopus [1]

and TIVC [10] provide bandwidth guarantees but not work-

conserving, while Seawall [11] does the opposite. EyeQ [8]

and GateKeeper [14] are work-conserving, but they require

the network core to be congestion-free which is not the case

for production datacenters [6]. Similarly, FairCloud PS-P [13]

is also work-conserving, but at the cost of expensive switch

hardware support especially per-VM queues. Furthermore, all

these solutions do not consider low latency. On the other hand,

Silo [7] considers guaranteed bandwidth and packet latency,

but it does not achieve work conservation.

We also note that there exist some traditional solutions that

tackles similar problems in the broader context of the Internet.

For example, weight fair queuing (WFQ) [22] can be borrowed

to achieve bandwidth guarantees and work conservation by us-

ing per-tenant dedicated queues. However, today’s commodity

switches have a limited number of queues (e.g, 4-8), which

is far from enough for clouds with many tenants. For some

other advanced schemes like [23, 24], their algorithms are too

complicated to be implemented in commodity switches.

Deep dive: The work closest to Trinity is ElasticSwitch [6].

However, there is a fundamental tradeoff between accurately

providing bandwidth guarantees and being work-conserving

in ElasticSwitch. In order for a tenant to detect the spare

bandwidth not being used by other tenants, ElasticSwitch

needs to probe the available bandwidth by increasing the

flow rates. However, probing too conservatively (i.e., increase

gradually but drop dramatically) may under-utilize the avail-

able bandwidth and is not sufficiently work-conserving; while

probing too aggressively (i.e., increase dramatically but drop

gradually) may affect bandwidth guarantees of other tenants

when their traffic come back to network.

We show this dilemma using testbed experiments in Fig. 1.

As shown in Fig. 1a, there are four VMs of two tenants A and

B sharing a same bottleneck link, and VM A1 and B1 send

traffic to A2 and B2, respectively. We measure the throughput

at A2 and B2 every 5ms. In the first experiment, we assume

both tenants have 150Mbps guarantees and use conservative



(a) Two tenants A and B share a bottleneck link of 1Gbps.
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(b) Conservative probe is not work-conserving (both tenants have
150Mbps guarantees).
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(c) Aggressive probe affects bandwidth guarantees (tenant A and
B have 150Mbps and 750Mbps guarantees respectively).

Fig. 1: Deep dive experiments to show the dilemma.

probe. In this case, the ideal work conservation result should

be that both tenants stay around 500Mpbs. However, in Fig. 1b,

we can see that the scheme is not fully work-conserving,

because it probes available spare bandwidth too conservatively

by increasing rates slowly at the beginning, but dropping too

dramatically once it senses congestion. Spare bandwidth in the

valleys is wasted.

In the second experiment, we assume tenant A and B

have 150Mbps and 750Mbps guarantees respectively and use

aggressive probe. We let A take more spare bandwidth first,

and later on more traffic from B arrives. However, in Fig. 1c,

we can see that, under such aggressive probe, B even cannot

get back its guaranteed bandwidth for a long while. The reason

is that the work-conserving traffic of A adversely throttles the

bandwidth guarantee traffic of B. Because A drops gradually

upon congestion (but increases dramatically when seeing spare

bandwidth), it makes B unable to grab its minimum guarantee

of 750Mbps in a short time (although eventually it will).

We note that, in ElasticSwitch [6], they proposed solutions

such as 10% headroom, hold-increase and rate-caution which

essentially trade work-conservation for bandwidth guarantees,
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Fig. 2: Trinity system framework.

but do not completely solve the problem.

III. THE TRINITY DESIGN

A. Design Overview

To solve the above dilemma, we seek network support

instead of sticking to pure end-to-end solution. By simply dif-

ferentiating the two types of traffic at the end and prioritizing

them in the network, we break the impasse.

Specifically, Trinity decouples providing bandwidth guar-

antees from being work-conserving by differentiating traffic

of bandwidth guarantees from that of work conservation

with two colors at the end (i.e., green indicates bandwidth

guarantee traffic, and red indicates work-conserving traffic),

and leveraging commodity switch capability to enforce stric-

t priority queueing in the network. That is, the traffic of

bandwidth guarantees is always prioritized over that of work

conservation in the network. With such prioritization enforced,

work conservation can now be designed more aggressively

without causing any interference to bandwidth guarantees.

This effectively enables Trinity to achieve absolute bandwidth

guarantees and work conservation without any tradeoff.

Meanwhile, such prioritization of bandwidth guarantee traf-

fic over work conservation traffic also enables Trinity to

optimize and ensure low latency for short flows: it only needs

to make sure that the packets of short flows are colored as

bandwidth guarantee packets. The reason is as follows. Since

tenant’s bandwidth guarantee requirement has already been

met by the provider based on the network capacity in the ten-

ant admission control phase, pure bandwidth guarantee traffic

can be accommodated by the network without congestion and

the packets will experience little, if any, queueing delay. In

the case of mixed bandwidth guarantee and work-conserving

traffic, as long as the prioritization is in place, bandwidth

guarantee packets will not be blocked by work-conserving

traffic, and thus still be able to see low latency.

B. System Framework

The system framework of Trinity is shown in Fig. 2. We have

one Trinity software component for each VM-to-VM channel

running in the hypervisors (shown in the red rectangle).



At the sender side, the Rate Controller (RC) module is

responsible for determining the traffic rates for bandwidth

guarantees and work conservation between the VM pair.

Similar to ElasiticSwitch [6], Trinity provides hose mod-

el guarantees by transforming a hose model into a set of

minimum bandwidth guarantees for each source-destination

VM pair. For minimum bandwidth guarantee rate between

a VM pair, Trinity directly employs guarantee partitioning

(GP) technique developed in [6]. For work-conserving rate,

Trinity fully utilizes available spare bandwidth between the

VM pair through an aggressive rate control algorithm as we

will introduce in detail later.

As a result, RC updates the minimum bandwidth guarantee

rate and work-conserving rate for each active VM pair period-

ically. These two rates are fed to two token buckets to control

the coloring process of outgoing packets (see Fig. 2): Token

Bucket 1 generates tokens (green) at the rate of minimum

guarantee, and Token Bucket 2 generates tokens (red) at the

rate of work conservation. Unlike ElasticSwitch where work

conservation must be compromised in order not to affect band-

width guarantees, the work-conserving rate control function in

Trinity has no such restriction. It can grow aggressively or drop

conservatively to fully utilize available spare bandwidth.

To achieve low latency for short flows, as introduced, Trinity
only needs to color all packets of short flows as bandwidth

guarantee packets and lets them receive higher priority in the

network. In the framework of Trinity, we employ a Classifier

module to assign each flow to either a short-flow class or

a long-flow class. To be practical, Trinity does not assume

any prior knowledge of flow sizes; Instead, it prioritizes the

first few packets of every new flow. The threshold can be

initially set as a few or tens of KBs, a typical size of short

flows for latency sensitive applications [25], and subject to

improve by using advanced thresholding schemes such as [17].

In our implementation, the classifier keeps track of the bytes

sent of every flow; if the bytes sent of a flow is less than a

given threshold, then the flow remains in the short-flow class;

otherwise, it is moved to the long-flow class until finish.

At the receiver side, Trinity employs a re-sequencing

buffer, a common technique used by many prior works [26]–

[28], to absorb potential out-of-order packets.

In the network switch, Trinity simply leverages 2-level

priority queueing to enforce a strict prioritization of bandwidth

guarantee traffic over work-conserving traffic. Furthermore,

Trinity also leverages the ECN support of commodity switches

for its rate control as shown later.

In general, the workflow of Trinity is simple. For packets in

short-flow buffer, they only consume tokens in Token Bucket

1 (colored as green) and enjoy low latency in the network. In

case Token Bucket 1 runs out of tokens (which could happen

very occasionally, e.g., a persistent long flow consumes the

last green token right before a new flow starts), the packets

just wait temporarily for the new green tokens to be generated.

For packets in long-flow buffer, they can be colored as

either green or red. When there are available tokens in Token

Bucket 1 and short-flow buffer is empty, they are colored

as green and identified as bandwidth guarantee traffic in the

network; Otherwise, they are colored as red and identified as

work-conserving traffic. This includes two possibilities: 1) no

token in Token Bucket 1, this means the minimum bandwidth

guarantee is reached; and 2) tokens available in Token Bucket

1 but short-flow buffer is not empty, in such case packets in

long-flow buffer do not consume green tokens in order not to

cause any delay to packets in short-flow buffer. It is possible

that even Token Bucket 2 can run out of tokens, in this case,

Trinity tries to buffer the packets in the long-flow buffer before

dropping them when buffer occupancy grows too large.

C. Detailed Mechanisms

Despite being conceptually simple, there are still a few

concrete design issues we need to address. We now discuss

these problems and our solutions to them.

Problem #1: Rate control. As introduced, a key benefit of

Trinity is that, by prioritizing bandwidth guarantee traffic over

work-conserving traffic, we can employ aggressive rate control

algorithm for work conservation without affecting bandwidth

guarantees. Then the question is: what kind of rate control we

should employ?

Solution: For each VM-to-VM channel, RC decouples

minimum bandwidth guarantee rate (denoted as RG) from

work-conserving rate (denoted as RW ).

For RG, we follow the approach of ElasticSwitch [6]: for a

channel X → Y , RC sets its bandwidth guarantee rate as:

RX→Y
G = min(BX→Y

X , BX→Y
Y ) (1)

where BX→Y
X is the guaranteed bandwidth assigned by X’s

hypervisor for the traffic to Y, and BX→Y
Y is the guaranteed

bandwidth assigned by Y’s hypervisor for the traffic receiving

from X. Let BX be the bandwidth guarantee of VM X. If X

is sending traffic to N destination VMs with unbounded band-

width demand, we have BX→Y
X = BX/N . The computation

for BX→Y
Y is similar.

For RW , RC uses an aggressive algorithm to update its

value periodically. The idea is that when there is no congestion

feedback from network, we let a VM-to-VM channel to send

as much work-conserving traffic as the NIC allows; When

there is congestion feedback from network, we reduce RW in

proportion to an estimation of network congestion.

Formally, let S be the set of VMs hosted on a server, and

∀X ∈ S, we use BX to denote the bandwidth guarantee of X .

Assume the capacity of the NIC is C, then the spare capacity:

CW = C −
∑

X∈S

BX (2)

To apply the idea mentioned above, the hypervisor divides

all the active VM-to-VM channels into two sets P and Q, and

computes work conserving rates for channels in different sets

using different schemes. Here P is the set of congestion-free

channels, while Q is the set of congestion-caution channels.

Initially, we put all active channels in P.



Let CP be the total spare capacity belonging to the

congestion-free channels. It is easy to know that:

CP = CW −
∑

u→v∈Q

Ru→v
W (3)

Here Ru→v
W is the work-conserving rate of channel u → v.

For a channel X → Y in P , its work conserving rate is:

RX→Y
W = CP ∗ RX→Y

G∑
u→v∈P Ru→v

G

(4)

It means that all channels in P share spare capacity CP in a

weighted fair sharing fashion, where the weight is set as the

bandwidth guarantee.

Although our Trinity ensures that work-conserving traffic

will not affect bandwidth guarantee traffic, sending too much

work-conserving traffic may cause a large number of packet

losses in the low priority queues on switches, which will result

in TCP timeout and thus hurt the throughput of TCP flows.

To address this, we enable ECN in the low priority switch

queues. On the end hosts, we let hypervisors monitor the

congestion feedback of ECN marking. Specifically, hypervi-

sors will maintain an estimation of the fraction of red packets

that are marked with ECN (denoted as β) in each period for

all channels. If a congestion-free channel is detected to be

congested, it will be moved from P to Q. For any congestion-

caution channel X → Y in Q, in each period, if β is non-zero,

we reduce its work conserving rate in proportion to β in a

manner similar to DCTCP [25], i.e.,

RX→Y
W = (1− β/2) ∗RX→Y

W (5)

If β is zero, it means that there is no congestion in the network.

We then increase its work conserving rate as follows:

RX→Y
W = min(RP , (1 + α) ∗RX→Y

W ) (6)

Here RP is the work-conserving rate this channel will be

allocated if it is a congestion-free channel. A congestion-

caution channel should get no more allocation than its share

as a congestion-free channel. α is a factor used to control the

aggressiveness of rate increase. If RX→Y
W = RP after updating

rate, the hypervisor will move this channel back to P .

In a public cloud, we cannot assume all tenants support ECN

in their transport layer protocols. To make our ECN-based

solution practical: at the sender side, for all out-going packets,

the hypervisor sets the ECN-capable bits in IP header to be

true; at the receiver side, the hypervisor estimates the fraction

of ECN marked incoming red packets for every VM-to-VM

channel, and sends this estimation back to the corresponding

hypervisor at the sender side periodically.

In addition, the hypervisor should also record whether a con-

nection supports ECN. For a TCP connection, the hypervisor

can know whether it supports ECN in 3-way handshakes. For

those flows that disable ECN, to avoid disturbing the function

of their transport layer protocols, the hypervisor will clear the

ECN bits when delivering packets to upper layer.

Problem #2: Packet trapping. There exist scenarios that red

packets can get trapped (starved) in the lower priority queue

of a bottleneck switch. For example, initially the switch has

spare bandwidth (by other tenants’ bandwidth guarantees but

currently not being used) for work-conserving traffic and thus

some red packets get in the lower priority queue. Suddenly,

the bandwidth guarantee packets of other tenants come back

and occupy the bandwidth for a long duration. Then, the work-

conserving red packets get trapped due to lower priority. As a

consequence, the TCP sender of those red packets responds by

retransmitting the packets repeatedly, and these retransmitted

packets may get dropped persistently since the bottleneck

queue is already full.

Solution: Reserving sufficient bandwidth headroom for

work-conserving traffic can potentially address this problem,

however it is a waste of bandwidth and thus not desirable.

We introduce a simple solution to this problem without

bandwidth headroom. As mentioned above in rate control,

the hypervisor at the receiver side will estimate the fraction

of ECN marked incoming red packets for every VM-to-VM

channel periodically. Then if a hypervisor does not receive any

red packets for a VM-to-VM channel in the last period, it can

send a message to inform the corresponding hypervisor at the

sender side of the possible packet trapping. The hypervisor at

the sender then checks how many red packets the source VM

has sent out for this VM-to-VM channel in the last period. If

the source VM does send out some red packets, it indicates

packet trapping in the network. The hypervisor then sets the

work-conserving rate RW to a small value (e.g., 10Kbps), and

marks this channel as congestion-caution channel.

Problem #3: Packet re-ordering. For a short flow, all of its

packets are colored as green, there is no out-of-order problem.

While for a long flow, due to instantaneous token availability

in Token Bucket 1, the packets can alternate between green and

red. It is possible that in the same long flow, some packets with

smaller sequence numbers are colored as red as tokens run

out in Token Bucket 1, while subsequent packets with larger

sequence numbers are colored as green because new tokens are

being generated. In such case, packet re-ordering could arise

because red packets may experience longer queueing delay in

the network and reach the destination later than green ones.

This is detrimental to TCP throughput, by triggering window

collapse and unnecessary retransmissions.

Solution: The solution to this problem is twofold. At the

sender, we minimize the case that packets of a flow alternate

from red back to green. Specifically, we introduce a color

transition delay parameter τ : when there is a need to change

the colors of packets from red to green, we defer the change

by τ seconds. There are two benefits for this delay. First,

it increases the chance that some other flows may come up

and consume the tokens in Token Bucket 1 without packet

re-ordering. Second, it decreases the chance that packet re-

ordering happens with the flow itself because this has already

reserved some additional time for the red packets to transmit.

At the receiver, we adopt a re-sequencing buffer [26]–[28] to

absorb possible out-of-order packets as shown in Fig. 2. More

specifically, if a green packet p is received and some packets



pi prior to it have not been received yet, Trinity puts p into

the re-sequencing buffer and a timer is initiated. If all pis are

received at a time t before timeout, they are submitted to TCP

receiver together with p immediately; Otherwise, the whole

buffer is submitted when timeout.

IV. IMPLEMENTATION AND TESTBED SETUP

A. Trinity Implementation

Trinity consists of two components on end-hosts: receiver

RX processing and sender TX processing. As a prototype, we

have implemented TX and RX processing as a Linux kernel

module. We also implemented a ElasticSwitch-like kernel

module following the description of [6]. The kernel module

is located as a shim layer above the physical NIC driver in

hypervisor, without touching network stacks and applications

of tenant’s VMs. We also developed an application to con-

figure Trinity kernel module in user space. The application

communicates with kernel module using IOCTL [29]. We now

describe each component in detail.

Sender Trinity Module: The sender module consists of a

hash based flow table and multiple TX contexts. The flow

table is used for tracking per-flow state and packet classifi-

cation. Its operations are as follows: 1) All of the outgoing

packets are intercepted by NETFILTER hook at LOCAL OUT

and directed to the flow table [30]. 2) Each flow in the

flow table is identified by the 5-tuple: source/destination IPs,

source/destination ports and protocol. When a packet comes

in, we identify its corresponding flow entry (or create a new

entry) and update the amount of bytes sent1. 3) Based on the

bytes sent information, we classify packets and direct them to

FIFO queues of corresponding TX contexts.

We allocate a TX context for each VM-to-VM pair. The

TX context maintains basic TX information and a rater limiter.

Unlike traditional token bucket rate limiter, our rate limiter has

two associated FIFO queues, a timer, two rates (RW and RG)

and corresponding two kinds of tokens. The packets of short-

flow class and long-flow class are segregated by two FIFO

queues. To enforce accurate rates over short timescales and

avoid long delay to short-flow packets, we use Linux high-

resolution kernel timer, HRTIMER [31], for our rate limiters.

Once the timer fires, we update two kinds of tokens and

begin packet scheduling. The packets from short-class FIFO

queue has the high priority to be dequeued but they can

only consume tokens for bandwidth guarantee traffic. After

scheduling short-flow class packets, the packets from long-

flow class can be dequeued and they can consume both of two

kinds of tokens. The dequeued packets consuming different

kinds of tokens will be marked with different Different Service

Code Point (DSCP) values and enqueued to different priority

queues in network switches. To make ECN fully effective for

1Tenants may establish persistent TCP connections to reduce connection
establishment overhead and keep delivering short messages over these con-
nections. These persistent connections will be eventually be assigned to the
low priority by Trinity after long time. We can periodically update flow states
based on more comprehensive network behaviors. For example, when a flow
idles for some time, we can reset the bytes sent of this flow back to 0.
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Fig. 3: Trinity testbed.

every packet regardless of their protocols, we set ECN-capable

(ECT) codepoint to every dequeued packet.

Receiver Trinity Module: The receiver modules consists of

multiple RX contexts and a control packet generator. We pre-

allocate a RX context for each VM-to-VM communication

pair. The RX context tracks the VM-to-VM pair’s receive

traffic and measures incoming throughput. In each control

interval, the RX context calculates the fraction of ECN mark-

ing packets and delivers this to source VMs using special

feedback packets. Similar to EyeQ [8], our feedback packet is

a special minimum sized IP packet (64 bytes) with a special

unused IP protocol number (143 in our implementation). We

encode the ECN fraction in the IP identification field. Since

we only generate a packet for each VM-to-VM pair every

control interval, the feedback traffic consumes limited network

bandwidth. Considering a VM concurrently receiving traffic

from 100 VMs, the feedback traffic only consumes ∼50Mbps

throughput over the control interval of 1ms. Furthermore,

we can also piggyback the feedback information on packets

back to the source VM. To achieve low latency for control

messages, the feedback packets will be marked with DSCP

of bandwidth guarantee traffic and sent out without going

through rate limiters. To not disturb tenant’s network stacks,

the RX context also clears any possible ECT and ECN marks

in incoming packets when a tenant disables ECN function.

B. Testbed Setup

To evaluate Trinity, we build a dumbbell testbed with 16

servers connected to 2 Pronto-3295 48-port Gigabit switches

as shown in Fig. 3. We configure strict priority queueing and

per-queue ECN marking on switches. The shared buffer is

enabled on our switches by default. With per-queue ECN

marking, each queue has its own marking threshold and

performs ECN marking independently to other queues. Packets

are classified into different priority queues based on their

DSCP values. Each server is a Dell PowerEdge R320 with

a 4-core Intel E5-1410 2.8GHz CPU, 8G memory, a 500GB

hard disk, and a Broadcom BCM5719 NetXtreme Gigabit

Ethernet NIC. Each server runs Debian 6.0-64bit with Linux

2.6.38.3 kernel. Due to the limited number of CPU cores in

our physical servers, we emulate multiple VMs by creating

multiple virtual network interfaces with different IP addresses
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Fig. 4: Average throughput of VM A2 when the number
of TCP connections used by tenant B varies.

to avoid virtualization overheads. In our experiments, each

tenant has its own virtual subnets.

V. EVALUATION

We evaluate Trinity using testbed experiments. Our evalua-

tion centers around two key questions:

• Does Trinity have any tradeoff between bandwidth
guarantee and work conservation? By comparing to

three other schemes: no protection, static reservation and

ElasticSwitch, we show that Trinity can accurately provide

minimum bandwidth guarantees while at the same time

enabling VMs with large bandwidth demand to fully utilize

spare link capacity. Specifically, Trinity outperforms Elastic-

Switch by 20.88%–53.06% in terms of average throughput

under different settings.

• Can Trinity deliver low latency for short flows and
benefit their flow completion time (FCT)? We evaluate

the scenarios where short flows coexist with long flows.

Our results show that, compared to ElasticSwitch, Trinity
improves the FCT by 22%-33% on average and 68%-71%
at the 99th percentile for 1KB short flows; furthermore, it

reduces the FCT by 21%-38% on average and 62%-70% at

the 99th percentile for 20KB short flows.

Schemes compared: We mainly compare Trinity against

ElasticSwitch [6], static reservation (Oktopus-like [1]) and

no reservation in our testbed. Among them ElasticSwitch is

our closest work to compare. Qualitative analysis of other

schemes like Gatekeeper [14] and EyeQ [8] shows that those

approaches cannot provide guarantees when the network core

is congested, so we exclude them in our testbed experiments.

Parameters: The rate control interval is set to 5ms. We set

ECN marking threshold to be 30KB as DCTCP [25] recom-

mends. For the rate control algorithm of ElasticSwitch [6], we

also use its recommended algorithm.

A. Bandwidth Guarantees and Work Conservation

We show that Trinity can provide bandwidth guarantee while

achieving good work conservation when multiple tenants are

competing for the same bottleneck link.

Many connections vs one connection: In this experiment,

there are four VMs (A1, A2, B1 and B2) of two tenants A and

B sharing a same bottleneck link. VM A1 on server S1 sends

traffic to VM A2 on server S9 using one TCP connection,

while VM B1 on server S2 sends traffic to VM B2 on server

S10 using different numbers of TCP connections.

We measure the throughput at VM A2 under four schemes:

no protection, static reservation [1, 9], ElasticSwitch, and

Trinity. In Fig. 4a, both tenants are provisioned with 100Mbps

guarantees. In Fig. 4b, both tenants are provisioned with

300Mbps guarantees.

From the results, we make the following two observations:

1) No protection does not provide any bandwidth guarantee

as link capacity is shared among all TCP connections. Static

reservation provides minimum bandwidth guarantee, but does

not utilize any spare bandwidth. ElasticSwitch provides band-

width guarantees and utilizes part of the spare bandwidth.

In contrast, Trinity not only provides bandwidth guarantee

but also fully utilizes all the spare bandwidth. In terms of

the average throughput, Trinity outperforms ElasticSwitch by

20.88% to 53.06% in different bandwidth guarantee settings.

2) ElasticSwitch wastes around 50% of the spare bandwidth.

For instance, in Fig. 4a, when reserving 20% of the link capac-

ity on the bottleneck link as bandwidth guarantees, ideally, VM

A2 should achieve around 500Mbps throughput on average.

However, under ElasticSwitch, the average throughput of VM

A2 is only about 230Mbps.

We further look into the reason behind it by measuring the

throughput of VM A2 every 5ms (i.e., rate control interval).
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Fig. 5: Average throughput under 3 schemes.

In Fig. 4c, we show the result of the case where there are

10 TCP connections between VM B1 and B2. As illustrated,

under ElasticSwitch, the throughput of VM A2 drops back to

minimum guarantee as long as it senses congestion. Due to this

conservative rate control, ElasticSwitch can only utilize about

half of the spare bandwidth on average. On the other hand, our

Trinity achieves nearly ideal throughput at the granularity of

millisecond, this is because Trinity adjusts rate for each active

VM pair based on a fine-grained estimation of the network

congestion as introduced in §III-C.

A follow-up question may arise: can ElasticSwitch provide

bandwidth guarantee and achieve good work-conservation by

using the rate control algorithm of Trinity? We answer this

question in the following experiment.

Tradeoff between bandwidth guarantees and work conser-
vation: We denote ElasticSwitch with original rate control as

conservative ElasticSwitch (C-ElasticSwitch), and with Trini-
ty’s rate control as aggressive ElasticSwitch (A-ElasticSwitch).

In this experiment, we use the same scenario as above, and

measure the average throughput of VM A2 and B2 under

C-ElasticSwitch, A-ElasticSwitch and Trinity. The number of

TCP connections between VM B1 and B2 is set to 10.

The results in Fig. 5 show: 1) C-ElasticSwitch provides

bandwidth guarantees but cannot fully utilize spare bandwidth

Trinity ElasticSwitch

Flow size 1KB 20KB 1KB 20KB

Average FCT(us) 212 857 272 1083

99th percentile FCT(us) 274 1104 857 2878

TABLE II: FCT of short flows (60% of link capacity is
reserved as guarantees).

Trinity ElasticSwitch

Flow size 1KB 20KB 1KB 20KB

Average FCT(us) 219 878 328 1413

99th percentile FCT(us) 291 1218 1002 3997

TABLE III: FCT of short flows (100% of link capacity is
reserved as guarantees).

as shown in Fig.5a; 2) A-ElasticSwitch achieves good work

conservation, but fails to provide bandwidth guarantees as

shown in Fig.5b; 3) Trinity provides accurate bandwidth guar-

antees while achieving good work conservation in both cases.

The takeaway of this experiment is that: 1) There is a

tradeoff between bandwidth guarantee and work-conservation.

Pure end-to-end solutions are difficult to achieve both goal-

s simultaneously. 2) In-network prioritization with priority

queueing is key to eliminating this tradeoff.

B. Low latency for short flows

We show that Trinity can deliver low latency for short flows

when short flows coexist with long flows.

Tradeoff between low latency and work conservation:
It has been shown that, when most of the link capacity

are reserved as guarantees, ElasticSwitch is work-conserving.

However, we will show that there is actually a tradeoff between

low latency and work-conservation. In this experiment, we

have 6 VMs A1, A2, B1, B2, C1 and C2 of three tenants

A, B and C. They are hosted on servers S1, S9, S2, S10, S3

and S11, respectively.

In this experiment, VM A1 sends 1KB or 20KB short flows

to A2 periodically, and in the meantime, VM B1 and C1 send

long flows to VM B2 and C2, respectively. To explore the

tradeoff between low latency and work-conservation, we study

two cases: 1. Three tenants are all provisioned with 200Mbps

guarantees on the bottleneck link, and thus we have 400Mbps

spare bandwidth; 2. Tenant A is provisioned with 200Mbps

guarantee on the bottleneck link. Tenants B and C are both

provisioned with 400Mbps guarantees on the bottleneck link.

Hence no spare bandwidth is left in this case.

For case 1, the results are shown in Table II. For case 2, the

results are shown in Table III. From the results, we observe

that: 1) Compared to ElasticSwitch, Trinity reduces the FCT

by 22% − 33% on average and by 68% − 71% at the 99th

percentile for 1KB short flows; furthermore, it reduces the

FCT by 21%−38% on average and by 62%−70% at the 99th

percentile for 20KB short flows. 2) Although ElasticSwitch is

work-conserving when 100% of link capacity is reserved as

guarantees, it is at the cost of sacrificing latency of short flows.

By comparing the results in Table II with that in Table III, we

can see that, under ElasticSwitch, the FCT increases by 17%−



Trinity ElasticSwitch

Flow size 1KB 20KB 1KB 20KB

Average FCT(us) 252 1105 1378 4989

99th percentile FCT(us) 302 1574 2160 7431

TABLE IV: FCT of short flows when short flows are
mixed with long flows on end-host (60% of link capacity
is reserved as guarantees).

21% on average, and by 30% − 39% at the 99th percentile.

In contrast, under Trinity, we do not observe any significant

increase on the FCT.

The takeaway of this experiment is two-fold: 1) There is

a tradeoff between low latency and work conservation. Pure

end-host based solutions are difficult to achieve both goals

simultaneously. 2) By letting packets of short flows receive

high priority in the network, we can well address this tradeoff

and improve the FCT of short flows significantly.

Short flows mixed with long flows on end-host: If a VM is

sending both long flows and short flows to a remote VM, then

the congestion on end-host cannot be simply ignored anymore.

Recall that in the design of Trinity, packets of short flows

have higher priority to consume tokens in Token Bucket 1

over packets of long flows. We show that this mechanism can

reduce end-host delay of short flows when short flows are

mixed with long flows on end-host.

In this experiment, we change the scenario above by letting

VM A1 send both short flows and long flows with unbounded

demand to VM A2. In Table IV, we show the results of the

case when only 60% of link capacity is reserved as guarantees.

From the results, we can find that: compared to Elastic-

Switch, Trinity reduces the FCT by 82% on average and by

86% at the 99th percentile for 1KB short flows; Furthermore,

it reduces the FCT by 78% on average and by 79% at the 99th

percentile for 20KB short flows. This implies that Trinity can

reduce both in-network delay and end-host delay.

VI. CONCLUSION

This paper presented Trinity, a simple yet effective solution

that provides triple properties: bandwidth guarantees, work

conservation and low latency simultaneously in the cloud. By

differentiating traffic at the end and enforcing prioritization in

the network, Trinity eliminates the tradeoff between provid-

ing bandwidth guarantees and being work-conserving, while

achieving low latency for short flows. We have implemented

Trinity using commodity switches and servers, and demonstrat-

ed its performance with testbed experiments.
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